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Dual-Eye Vision-Based Docking Experiment in the Sea for Battery
Recharging Application

Khin Nwe LWIN ∗, Myo MYINT ∗, Kenta YONEMORI ∗, Naoki MUKADA ∗,
Yoshiki KANDA ∗, Akira YANOU ∗∗, and Mamoru MINAMI ∗

Abstract : This paper presents a stereo-vision-based approach for sea-bottom docking of autonomous underwater vehi-
cles (AUVs) for battery recharging. According to the intended application, a unidirectional docking station was designed
in which the AUV has to dock from a specific direction. Real-time relative pose (position and orientation) estimation
was implemented utilizing three-dimensional model-based matching to the actual target and a real-time multi-step ge-
netic algorithm. Using the proposed approach, we conducted the experiments in which an AUV docked to a simulated
underwater battery recharging station in the sea near Wakayama City, Japan. The experimental results confirmed the
functionality and potential of the proposed approach for sea-bottom docking of AUVs. Although similar sea trials were
reported previously, detailed discussions and performance analyses were not presented, especially regarding the relations
among pose estimation, output control voltage, and photographic records. The analyses confirmed that the successful
docking was realized and that the method has tolerance against turbulence applied to a remotely operated vehicle near
the docking station.
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1. Introduction

Currently, autonomous underwater vehicles (AUVs) are be-
ing used in many applications, such as sea-bottom surveying,
inspection of underwater structures (dams and bridges), and
underwater cable tracking [1]. However, underwater vehicle
operations are limited to activities that can be completed with
the duration supported by the power capacity of their batteries.
Even though advanced technology related to power devices pro-
vides long operation periods, underwater vehicles have to come
back to a surface vessel for recharging when operations take
more than a couple of days. To overcome this issue, underwa-
ter recharging stations with a docking function have been pro-
posed using various approaches. Indeed, the docking of AUVs
has become indispensable for advanced applications such as
“sleeping” under a surface ship [2], downloading new mission
instructions [3], and interventions using a manipulator installed
on an AUV [4].

Because docking is thought to be an inevitable procedure
for enabling battery recharging of AUVs at the sea bottom,
many studies of underwater docking have used various ap-
proaches [2]–[10]. Depending on a docking station’s structure
for a specific application, different methods and sensors have
been utilized. For simplicity and effectiveness of the intended
application, the authors selected and designed a unidirectional
station to which an underwater vehicle has to approach from
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a specific direction and perform docking at a single point of
entry. Therefore, homing accuracy and robustness against dis-
turbances, such as water currents, entered the picture as critical
requirements for docking operations. To fulfill these demands,
several studies have been conducted recently. The localization
of a vehicle and a station was implemented using different kinds
of sensors and techniques. Required navigation and homing
accuracy varies from less than the meter level to the centime-
ter level, depending on the application. For precise docking
accuracy for underwater battery recharging, visual information
is more important than information collected from other sen-
sors [5],[6].

Cameras used in docking by most of the researches are based
on monocular vision system [7],[8]. The work in [7],[8] ob-
tained the relative position and distance from a geometric ar-
rangement of lights at the docking station. In such an approach,
the calculation of relative orientation was more complicated
and difficult than detection of the position. However, stereo
vision can use parallactic displacement, which is effective for
camera depth estimation in three-dimensional (3D) pose detec-
tion. On the other hand, monocular vision estimation meth-
ods cannot use parallactic displacement, the precision of dis-
tance measurement in the camera depth direction is not pre-
cise enough for applications in which high homing accuracy of
AUVs is important. Even though two cameras were mounted on
the vehicle in [9],[10], both cameras did not see the target object
simultaneously, as one camera detected a target marker while
the second camera was looking at something else to perform
other tasks. Though efforts have been increasing to construct
a practical docking system, there is still not a practical imple-
mentation useful for battery recharging at the actual sea bot-
tom. The stereo-vision-based real-time control approach seems
to have been researched only by the authors’ group.
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Fig. 1 Docking experiment for underwater battery recharging. (a) Dock-
ing experiment in the pool and (b) docking experiment in the sea.

In previous work [11]–[14], the authors concentrated espe-
cially on the performance of 3D pose estimation and visual ser-
voing to achieve what are critical steps for real-time pose esti-
mation and maneuvering for docking operations. In [11], the
ability of dual-eye cameras to perform real-time pose tracking
was confirmed when a target was moving, even when the cap-
tured images contained some noise due to air bubbles in front
of the cameras. In that study, the remotely operated vehicle
(ROV) was subjected to not only noise disturbance in images
but also physical disturbance in the water stream induced by
the buoyancy of the air bubbles. This confirmed that the pro-
posed approach is robust enough to operate in actual sea condi-
tions. In [12], 3D pose estimation when the target was partially
obscured was discussed. The docking procedure was imple-
mented, and its performance was evaluated in a pool in [13].
As follow-up work, the robustness of the system under a chang-
ing lighting environment was checked in [14]. However, this
work [11]–[14] was conducted in an indoor pool for each in-
dividual objective. Therefore, a docking experiment using the
proposed approach in the actual sea was the main task remain-
ing to confirm the functionality and practicality of our approach
for sea docking. Docking tests were conducted using the circu-
lar hole shown in Fig. 1 in both pool and sea tests. Finally,
in this study, the docking experiments were conducted in the
sea near Wakayama City, Japan, to evaluate the practicality of
the system after further development of the proposed approach
based on previous work. The specific contribution of this study
is described in the following section.

2. Contribution of This Study
An ROV that can dive up to 50 m deep was used in this

study. The feasibility of docking in an actual sea environment
with lighting variation and turbidity disturbances as destabiliz-
ing factors for visual servoing was verified firstly by conducting
docking tests in a pool. In previous work [15]–[17], sea docking
experiments were conducted. The docking experiments were
conducted on the coast of Wakayama Prefecture to evaluate
how much robustness the proposed 3D move-on-sensing (3D-
MoS) system would have in the natural sea environment [16].
(3D-MoS is what we call the dual-eye visual feedback motion
control system). In [17], results of sea docking experiments
were analyzed with a fitness distribution related to the real-time
multi-step genetic algorithm (RM-GA) behavior. However, the
study in [17] did not provide a detailed discussion of the time
profile of the recognized pose with the respective output volt-
ages to control the thrusters and the related photographs during
the docking motion. The purpose of the present paper is to re-
port these aspects rigorously. This point is important because
sway and yaw motion has been observed several times when the
ROV was positioned just in front of the docking station. The in-
fluences of these transient motion responses were stabilized by

visual servoing, resulting in docking completion. The contri-
butions of this study that are different from author’s previous
presentations [15]–[17] are as follows:

(1) A docking experiment in the actual sea was conducted to
confirm the functionality of the proposed system.

(2) The effectiveness of the proposed dual-eye control system
was evaluated from the viewpoint of practicality and func-
tionality in natural environments by conducting a docking
experiment, which included

• The time profile of the recognized pose by RM-GA,

• The relevant thruster output voltage, and

• Recording ROV poses, as depicted by photos ex-
hibiting sway and yaw motion in turbulence.

Based on the above comprehensive analyses of docking behav-
ior, practical docking performance was confirmed in the actual
sea.

3. 3D-MoS System

In the proposed approach, only visual information is directly
used for feedback control of 3D pose tracking in real time us-
ing dynamic images from two cameras input at a video rate of
30 frames per second. Figure 2 is a block diagram of the pro-
posed system, which shows how images from dual-eye cam-
eras mounted on the ROV are sent to and processed by the PC.
Based on the error between the desired pose and estimated pose,
the 3D motion controller outputs signals to direct thruster out-
puts through an interface unit to control the vehicle. The inter-
face unit is for image capture and digital-to-analog conversion
to output voltages for the vehicle thrusters.

Fig. 2 Block diagram of proposed system with real-time 3D pose estima-
tion and 3D motion controller implemented on a PC.

3.1 Docking Station

A unidirectional docking station was designed to simulate
underwater battery recharging. The size of the docking station
was 60 cm (L) × 45 cm (W) × 180 cm (H). Because a dock-
ing hole with a diameter of 7 cm and a 3D marker were fixed
in the docking station, the vehicle has to approach and perform
docking operation from one direction precisely. Two underwa-
ter cameras were installed in the docking station to record the
docking operation.

3.2 Docking Procedure

The docking procedure was designed with three steps: ap-
proaching, visual servoing, and docking.
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3.2.1 Approaching step
Normally, this step is performed using a long-distance nav-

igation sensor unit. In this work, the vehicle was controlled
manually to approach the docking station until the 3D marker
was detected. This step will be extended in the future by using
a long-distance navigation sensor to guide the vehicle until the
3D target marker comes into the field of view of the cameras.
3.2.2 Visual servoing step

After detecting the 3D marker, the relative pose between the
vehicle and the 3D marker is estimated in real time using a 3D-
model-based matching method and RM-GA. The vehicle was
controlled automatically using the estimated pose to assume the
desired pose.
3.2.3 Docking step

When the vehicle is stable at the desired pose with allow-
able error levels for docking operation by visual servoing, the
docking step is performed in which the vehicle inserts its dock-
ing pole into the docking hole. Errors in the x, y, and z direc-
tions (surge, sway, and heave, respectively) are defined as less
than ±20 mm, and the yaw angle θ error is defined as less than
3◦, where pitch and roll angles are naturally stabilized and not
controlled. Note that whenever the relative pose error exceeds
the allowance range, the process switches to visual servoing.
This switching process between the visual servoing and dock-
ing steps is intended to avoid any physical damage made by
contact between the docking pole and hole.

3.3 3D Motion Controller

Because of self-stabilization, roll and pitch angles are ne-
glected in controlling the movement of the vehicle. Therefore,
4 degrees of freedom (x, y, and z in mm and ε3 in ◦) are vari-
ables in the 3D pose tracking control, as shown in Fig. 3. Even
though a proportional–derivative (PD) controller appears to be
more efficient when the damping characteristic of water is not
sufficient for stabilizing control, it was found experimentally
that the damping characteristic was sufficient when using a pro-
portional (P) controller. Therefore, the simple P controller was
used with appropriate gains to control all thrusters of the ROV
instead of comparing the performance using the different con-
trollers, such as PD and proportional–integral–derivative (PID)
controllers with different gains. The P controller was applied
in the control system with feedback using the pose estimated
by RM-GA. In previous work [11]–[13], thrust in the y-axis
direction was given by an on-off controller, and this has been
upgraded to a P controller. Thus, in this study, the control volt-
ages of all thrusters were calculated by the following propor-
tional control laws:
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where xd, yd, zd, and ε3d are desired relative values based on ΣH

(see Fig. 5 shown later) against the 3D marker; v1, v2, and v3 are
the voltages to produce thrust in the x-axis, y-axis, and z-axis
directions, respectively; ε3d is the desired rotation angle around
the z-axis; and v4 is the voltage for torque around the z-axis.
According to the thruster characteristics configured to stop at
2.5 V, the control voltage for each thruster is the differentiated
value gained by proportional gain value and added by offset

Fig. 3 Block diagram of real-time 3D pose tracking.

value, 2.5. Based on the experimental results, gain coefficients
were tuned to perform better during visual servoing.

3.4 Real-Time 3D Pose Estimation

3.4.1 Projection direction
This section briefly explains the proposed 3D pose estima-

tion method for the reader’s convenience; a more detailed dis-
cussion can be found in [18]. Instead of calculating the absolute
positions of the vehicle and the target at the docking station, the
estimated relative pose between them is input as feedback to the
control system. This avoids the limitation [19],[20] of feature-
based stereo vision, whose visual servoing technique is called
image-based, 3D model-based recognition based on 3D-to-2D
projection was applied in the proposed system. The 3D-to-2D
projection has the merit of avoiding the ill-posed problem of the
2D-to-3D reconstruction approach that hinders the 3D pose es-
timation when trying to measure the pose from the decomposed
2D image information of dual-eye cameras.
3.4.2 3D-model-based real-time pose estimation

Many 3D models use the same 3D information, such as
shape, color, and size, with different poses allocated randomly
in the search area. The real target object in 3D space is cap-
tured by dual-eye cameras and the poses of the model, each of
which is represented by one RM-GA gene, are projected as 2D
images. The difference in relative pose is calculated by com-
paring the projected 2D image model and the real target image
that is captured by the dual-eye cameras. The estimated pose of
the best model—that is, the model possessing the highest over-
lap between the target 3D marker and the model in space—is
assumed to be a true estimated pose. Therefore, the problem
of finding/recognizing the 3D marker and detecting its pose is
converted into an optimization problem with a multi-peak dis-
tribution. To perform posing in real-time, GA is modified as
RM-GA for searching for the best model in dynamic images
whose poses represent the target 3D marker’s pose. Note that
the evaluation is performed in 2D space and the convergence
occurs in 3D space.
3.4.3 Correlation function used as a fitness function

A fitness function is used to calculate the correlation between
the model and the actual target in the images captured by two
cameras using hue values. In other words, the intention of the
fitness function is to have a dominant peak at the true pose of
the target object. This fitness function with the highest peak at
true pose of the 3D marker allows to change the problem to find
a true pose into another problem to find the highest peak and
the pose giving the peak, that is an optimization problem. This
conversion rendered the RM-GA effective for real-time pose
estimation [18].

Here the fitness function is briefly explained. Because the
model has spheres with quantitative diameters rather than a
point, shape, and color (red, green, and blue), information for
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these spheres is used when calculating the correlation between
the model and the target object, as shown in Fig. 4. Figure 4 (a)
shows the actual 3D marker. Figure 4 (b) is a model of the 3D
marker with an enlarged view of the green ball, which consists
of two portions. The first portion is the inner area that is the
same size as the actual 3D marker, and the second portion is
the outer area that is the background. The dots in Fig. 4 (b) rep-
resent points for calculating the correlation degree, that is, how
much the inner area overlaps the green ball and the outer area
does not overlap the green ball [21].

When the hue value of the point on the model is similar to
the same point on the actual target, it just increases the fitness
value. If the model’s pose coincides with the pose of the actual
3D marker in 3D space, then all points in the inner area of mod-
els are on the 3D marker’s circle, and all points in the outer area
are not on the marker’s circle. In this case, the fitness function
has the highest value at the estimated true pose.

Finally, the fitness function has a maximum value when the
pose of the searching model fits the one of the target object
being imaged in the left and right camera images. The total
fitness value is calculated from averaging two fitness functions
based on the left and right cameras. A detailed explanation of
the fitness function is given in [22],[23]. The concept of the
fitness function in this study is an extension of the work in [23],
in which different models, including a rectangular surface-strip
model, were evaluated using images from a single camera.

Fig. 4 Real 3D marker and model. (a) Real 3D marker and (b) model
with enlarged view of the green ball model, where the inner area
is the same size of the actual target object (green ball) and the
outer area is the background area. The dots in panel (b) are points
for calculating the correlation degree, that is, how much the inner
area overlaps the green ball and the outer area does not overlap the
green ball.

4. Experiment
4.1 Experimental Layout for Docking

The main task in this experiment was to insert a docking pole
into the docking hole automatically by visual servoing. Figure 5
illustrates the relation of the ROV before and after docking. In
the visual servoing step, the vehicle goes to the desired pose
as shown in Fig. 5 (a), which is the condition ready for dock-
ing. When the vehicle is continuously stable within the position
error range of ± 20 mm in the desired pose for 165 ms, the ve-
hicle proceeds to insert the docking pole into the docking hole
by decreasing the desired distance between the vehicle and tar-
get in the x-axis direction gradually until it reaches a distance
of 350 mm from the 3D marker, as shown in Fig. 5 (b). The
desired position and orientation during visual servoing are ex-
pressed mathematically below, with the corresponding values
for docking completion given in parentheses.

Fig. 5 Layout of docking experiment and description of the alignment
process between the ROV and 3D marker. (a) Desired pose in
visual servoing state and (b) desired pose in docking completion
state.

Fig. 6 Appearance of the testing pool.

xd =
H xM = 600 (350) mm, (2)

yd =
H yM = 0 (0) mm, (3)

zd =
H zM = −30 (−30) mm, (4)

ε3d = 0 (0)◦, (5)

where HxM represents the x position of the origin of ΣM in ref-
erence to ΣH , and ΣM is as defined in Fig. 5.

4.2 Docking Experiment in a Pool

To check the functionality of the proposed approach before
the sea trial experiment, a docking experiment was conducted
in a pool, as shown in Fig. 6. The pool is near the sea, so it
was filled with seawater for a few months prior to the experi-
ment. The pool water contained particles and debris, such as
seaweed and dry leaves, that created noise in images captured
for visual servoing. In addition, trees next to the pool cast shad-
ows. Thus, the environment inside the pool naturally had poor
lighting, which is consistent with our ongoing work to perform
docking under turbid conditions with poor lighting. The dock-
ing station was placed on the bottom of the pool in this experi-
ment.

4.3 Docking Experiment in the Sea

The docking experiment was conducted near Wakayama
City, Japan. A total of five dockings were conducted. The
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Fig. 7 Pool docking results. (a) Fitness value; (b) photograph of ROV after docking completion; (c),
(e), (g), (i) recognized positions along the x-, y-, and z-axis directions and rotation around the
z-axis, respectively, where the desired values for visual servoing state are given as xd = 600 mm,
yd = 0 mm, zd = -30 mm, ε3d = 0◦; and (d), (f), (h), (j) voltage commanding thrust in the x-, y-,
and z-axis directions and rotation around the z-axis, respectively.

docking station was oriented with the long sides perpendicu-
lar to the shore. Docking tests began with the vehicle placed in
front of the docking station at a distance of about 3.5 m. The
buoyancy force was nearly 1.035 times that of freshwater, and
gentle waves were rolling in during the experiments. The ROV
was tethered and connected by a 200 m cable to the onshore
platform.

5. Results and Discussion

5.1 Docking Experiment in a Pool

Figure 7 shows the experimental results of the docking op-
eration in the pool. Figure 7 (a) illustrates the time profile of
the fitness value. Figure 7 (b) is a photograph of the ROV as
it completed docking. Figures 7 (c)-7 (j) show the relative po-
sition of the desired and recognized poses in each direction, as
measured by RM-GA, and the output voltage for each thruster
of the ROV. As shown in Fig. 7, the ROV was controlled manu-
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Fig. 8 Sea docking results. (a) Fitness value; (b) photograph of ROV in docking completion; (c), (e),
(g), (i) recognized positions along the x-, y-, and z-axis directions and rotation around the z-axis,
respectively, where the desired values for visual servoing state are given as xd = 600 mm, yd =

12 mm, zd = −70 mm, ε3d = 0◦ ; and (d), (f), (h), (j) voltage along the x-, y-, and z-axis directions
and rotation around the z-axis, respectively. A and B correspond to Fig. 9 (d), (e), indicated as C.

ally until the 3D marker was detected. Note that the recognized
poses during manual control are not accurate, and they were
not used in the feedback system. Automatic control was started
when the fitness value increased above 0.6, and then docking
was performed under automatic control. Because detection of
the 3D marker by the RM-GA can be determined by the value of
the fitness function, manual control could be switched to auto-
matic control autonomously. In the manual operation, the con-
troller was not operational when the output voltages were 2.5 V,
as shown in panels (d), (f), (h), and (j) of Fig. 7. At the oper-

ation time of 35 s in Fig. 7 (a), the fitness value increases from
about 0.4 to more than 1 when the distance between the ROV
and the 3D marker decreased. Theoretically, the maximum fit-
ness value is about 1.67. During the visual servoing stage, the
controller starts to output the thruster commands in each direc-
tion (x-, y-, and z-axes) and orientation around the z-axis with
the relative voltage values shown in panels (d), (f), (h), and (j),
respectively, of Fig. 7.

When the operation time was about 70 s, docking was com-
pleted, and the ROV maintained the desired pose, as shown in
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Fig. 9 Periodically captured images from dual-eye cameras during the docking operation and corre-
sponding images from underwater camera installed in the docking station. (a), (b) Images of
manual control, (c)–(e) images of visual servoing, and (f)–(i) images of docking. Dotted circles
in dual-eye camera images are the poses recognized by RM-GA. The images labeled with (C)
correspond to the results shown in Fig. 8 (e), (i) that are indicated by A and B, respectively.

Fig. 7 (b). The recognition results of the 3D marker using such
information as hue value, size, and shape were confirmed ex-
perimentally to be reliable. According to the experimental re-
sult, the docking operation was completed successfully within
40 s after initiation of automatic control.

5.2 Sea Docking Experiment

Of the five sea docking tests, one docking failed, but the other
four were successful. This paper provides a detailed explana-
tion of the third docking test. The experimental results of this

sea docking operation are depicted in Fig. 8. Initially, the ROV
was controlled manually until it was 1.5 m from the docking
station. The desired pose was xd = 600 mm, yd = 12 mm, zd = -
70 mm, and ε3d = 0◦. The visual servoing started after 22 s. Fig-
ure 8 (a) shows fitness values, and panels (c)-(j) show the rec-
ognized pose and respective output voltages for each thruster.
Figure 8 (b) is a photograph taken by the underwater camera
installed in the docking station. Figure 9 shows the periodic
snapshots from the dual-eye cameras and the underwater cam-
era as the ROV approached the 3D target marker by manual
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operation, visual servoing, and docking.
At the start of manual control, the fitness value before 17 s

was below 0.2 in Fig. 8 (a), the output voltage for each thruster
was 2.5 V in panels (d), (f), (h), and (j) of Fig. 8, which means
that the controller was not controlling the ROV thrusters. The
dotted circles do not entirely overlap the target 3D marker in the
initial stage of manual control, as shown in Figs. 9 (a) and (b),
which were taken from the two cameras of the ROV and the
underwater camera set at the docking station at the operation
times of 5 s and 15 s.

In the visual servoing step, the ROV approached from a dis-
tance of about 900 mm in the x-axis direction to the 3D marker
by visual servoing. After 22 s, the 3D marker was detected,
and the fitness value increased to more than 0.6, as shown
in Fig. 8 (a). The controller commanded the forward thruster
with an output voltage of about 0.1 V in the x-axis direction,
as shown in Fig. 8 (d). At the same time, the controller com-
manded each thruster in the y- and z-axis directions and the
orientation around the z-axis with the output voltages shown in
panels (f), (h), and (j), respectively, in Fig. 8. The positions in
the y- and z-axes are outside of the error allowance range at the
time 30 s, as denoted by “A” and “B” in Figs. 8 (e), (i). This is
a large deviation in the y-axis and orientation around the z-axis
during the third docking operation of the four succeeded dock-
ing. The deviation of sway can be confirmed by Figs. 9 (d), (e),
which are denoted by (C). However, the sway motion and rota-
tion error stabilized at about 35 s, as shown in Fig. 9 (f). At that
time, the dotted circle recognized by the RM-GA overlapped
with the real 3D marker.

At the time of 35 s, the position in the y- and z-axes was
within the error allowance range, as shown in Figs. 8 (e), (g)
as visual servoing transitioned to docking. Note that, as shown
by the z-axis voltage in Fig. 8 (h), the controller tried to direct
the ROV in a downward direction with a positive output volt-
age because of the buoyancy of the sea water. The success of
the docking operation was also confirmed by checking video
images captured by the two ROV cameras and the underwater
cameras installed at the docking station, as shown in Figs. 9 (f)-
(i). The images taken when the operation times were 35 s, 45 s,
55 s, and 58 s illustrate the docking step. Regarding accuracy, it
was confirmed experimentally that both recognition and dock-
ing accuracy was at the centimeter level because the docking
hole radius was 35 mm and the allowance error was ± 20 mm.
According to the experimental results, the sea docking opera-
tions were completed successfully within 40 s after control tran-
sitioned to automatic.

In the other successful docking tests, the fitness value was
above 1 when the 3D marker was detected by the RM-GA sys-
tem. All successful docking operations were completed within
40 s from the start of automatic control. Among the four suc-
cessful sea docking experiments, the second docking operation
had the shortest completion time, and the third docking oper-
ation had the longest completion time after automatic control
was initiated. The sway motion of the first and third docking
experiments was larger during the visual servoing state than in
the other docking trials.

6. Conclusion

In this work, sea docking experiments of an underwater ve-
hicle using two cameras and a 3D marker were implemented.

A docking experiment in a pool was conducted first to confirm
the functionality of the system. A docking station was designed
and deployed at the sea bottom to verify the proposed approach
for docking to a battery recharging station. Some pose fluc-
tuations occurred because of natural disturbances like sea cur-
rents. However, the vehicle could be controlled by visual ser-
voing using the proposed system, and the final docking opera-
tions were performed successfully. The docking experiment in
the pool and natural sea environment proved the functionality
and practicality of the proposed approach using stereo vision
for docking to a battery recharging station in an actual sea. The
docking trials were conducted in an actual sea to evaluate the
proposed docking effectiveness. The performance of real-time
pose tracking using standalone cameras and a 3D marker was
confirmed to provide real-time 3D pose recognition, and it pro-
duced successful docking. The robustness of the proposed sys-
tem under different illumination variation and water turbidity is
our on-going research and will be discussed in future work.
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