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Abstract: This research aims to achieve a new grinding robot system that can grind an object into desired shape with force-
sensorless control. In order to grind the target object into desired shape with sufficient accuracy, the hand of the robot arm has to
generate desired constrained force immediately after the grindstone being contacted with the metal object to be ground. Based
on the algebraic equation, we have proposed Constraint-Combined Force Controller, which has the ability to achieve the force
control without time delay if the motors should ideally generate required torques without time delay. In order to give the system
the ability to grind any working object into any shape, we focus on how to update the constraint condition in real time. Based on
the above preparation we constructed a simulator to evaluate the proposed shape-grinding system, resulting in having proven the
validity of our system to have the performance to adapt for grinding to desired-shape without force sensor and on-line estimation
is performed by spline curve and quadratic function and the result is compared with bezier curve. As a result, it is best to use
bezier curve for on-line estimation.
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Fig. 1. Grinding robot

1 INTRODUCTION
Industrial robots are used for many purposes, especially

as machining facilities. For example, there are welding, as-
sembling and grinding operations. This research aims to
achieve a new grinding robot system that can grind an ob-
ject into desired shape with force-sensorless control in real
experiment. Based on the analysis of the interaction be-
tween a manipulator’s hand and a work-piece, a model rep-
resenting the constrained dynamics of the robot is first dis-
cussed. Many researches have discussed force control meth-
ods of robots for constrained tasks. These control strategies
use force sensors generally to obtain force information[1]-
[3], where the reliability and accuracy are limited since the
work-sites of the robot tend to be filled with noise and ther-
mal disturbances, reducing the sensor’s reliability. On top of
this, force sensors could lead to the falling of the structure
stiffness of manipulators, which is one of the most essential
defects for manipulators executing grinding tasks. To solve

these problems, some approaches that don’t use force sensors
have been presented[4]-[8]. In previous our research, we dis-
cussed about grinding task of robot that have disk grinder as
an end-effector. Our grinding robot is 2-link SCARA manip-
ulator. The contact process of the grinder can be just thought
as non-dynamical process but a kinematical one, so the pre-
requisite that there is no motion occurred in vertical direction
to the surface to be ground could be justifiable. Therefore,
equation of motion to describe constrained vertical process
of the grinder contacting to the work-piece is represented by
an algebraic equation. Based on this algebraic equation, we
have proposed Constraint-Combined Force Controller[11],
[12], which has the ability to achieve the force control with-
out time delay if the motors ideally should generate required
torques without time delay, where force error will not be af-
fected by the dynamical motion along to the surface on which
the grinder can move[11], [12]. Our Constraint-Combined
force/position control method without using tactile sensor
can be thought to be essentially different from methods pro-
posed so far. Constraint-Combined Force Controller can
compute the input torques to achieve desired force/position
by using posture and angular velocity of the robot and fric-
tional force. In this presentation, we estimate the object’s sur-
face using the grinder as a touch sensor. In order to give the
system to grind any working object into any shape, we focus
on how to update the constraint condition in real time. Based
on the above preparation we constructed a simulator to eval-
uate the proposed shape-grinding system, resulting in having
proven the validity of our system to have the performance to
adapt for grinding to desired-shape without force sensor. On-
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line estimation is performed by bezier curve and quadratic
function and the result is compared with spline curve.

2 MODELLING OF CONTACT DYNAMICS
In this paper,the end-point of the grinding manipulator

shown in Fig. 1 is in contact with the constrained surface.
Constraint condition C is a scalar function of the constraint,
and is expressed as an algebraic equation of constraints as

C(r(q)) = 0 (1)

where r(m × 1) is the position vector from origin of coordi-
nates to tip of grinding wheel and q(n × 1) is joint angles.
The grinder set at the robot’s hand is in contact with the ma-
terial that is to be ground. The equation of motion of grinding
robot is modelled as following Eq.(2)[11],[12],

M(q)q̈ + h(q, q̇) + g(q) + Dq̇ = τ + JC
T fn − JR

T ft (2)

JC
T =

(
∂r

∂q

)T

(
∂C

∂r

)T

∥∥∥∥∂C

∂r

∥∥∥∥ (3)

JR
T =

(
∂r

∂q

)T
ṙ

‖ṙ‖
(4)

where M is a n × n matrix, h is centrifugal and coriolis
force vector, D is viscous friction coefficient matrix, g is
gravity vector. fn is the constrained force associated with C

and ft is the tangential disturbance force caused by grinding.
Moreover, JC

T is time-varying coefficient vector translat-
ing fn into each joint disturbance torque and JR

T is time-
varying coefficient vector transmitting the tangential distur-
bance force ft to joint disturbance torque. The equation rep-
resented by Eq.(2) must follow the constraint condition given
by Eq.(1) during the contacting motion of grinding. Differ-
entiating Eq.(1) by time twice, we have the following relation
among q, q̇ and q̈ that should be maintained during contact-
ing motion with the work-piece to be ground,[

∂

∂q

(
∂C

∂q

)
q̇

]
q̇ +

(
∂C

∂q

)
q̈ = 0 (5)

Above constraint condition represents an algebraic condition
of q̈ that have to be determined dependently on q and q̇.

Putting q̈ in Eq.(5) into q̈ in Eq.(2) to be determined iden-
tically so as the solution of q and q̇ of Eq.(2) to comply si-
multaneously with the constraint condition Eq.(5), the solu-
tion q̈ and fn could be uniquely determined. The following
Eq.(6) is the resulted solution of fn [11],[12],

fn = a(q, q̇) + B(q)JR
T ft − B(q)τ (6)

Where mc, a(q, q̇) and B(q) are

mc
4
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)T

(7)

a(q, q̇)
4
= mc

−1
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B(q)
4
= mc

−1
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∂C
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}
(9)

Substituting Eq.(6) into Eq.(2), the equation of motion of the
constrained robot dynamics (as fn > 0) can be rewritten as

M(q)q̈ + h(q, q̇) + g(q) = JC
T a(q, q̇)

+(I − JC
T B)τ + (JC

T B − I)JR
T ft (10)

Solutions of above dynamic equation always satisfy the con-
strained condition, then accordingly q satisfies Eq.(1).

3 CONSTRAINT-COMBINED

FORCE/POSITION CONTROL METHOD
In the following discussions of grinding task, we assume

that m = 2, n = 2, C is scalar function, since we use two
link manipulator as a experimental device. Putting the above
assumptions and Eq.(6) into consideration we can claim that
there is a redundancy of the number of the constrained force,
one, against the number of the input torque τ = [τ1, τ2]. This
condition is much similar to the kinematical redundancy.
Based on the above argument and assume that, the param-
eters of the Eq.(6) are known and its state variables could
be measured, and a(q, q̇) and B(q) could be calculated cor-
rectly, which means that the constraint condition C = 0 be
prescribed or measured correctly. As a result, a control law
is derived from Eq.(6) and can be expressed as

τ = −B+(q){fnd − a(q, q̇) − B(q)JR
T ft}

+{I − B+(q)B(q)}k, (11)

where I is a 2 × 2 identity matrix, fnd is the desired con-
strained forces, B(q) is defined as Eq.(9) and B+(q) is the
pseudoinverse matrix of it, a(q, q̇) is defined as Eq. (8) and
k is an arbitrary vector used for hand position control, which
is given as

k =
(

∂r

∂q

)T

{KP (rd − r) + KV (ṙd − ṙ)}, (12)
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where KP and KV are gain matrices for position and the ve-
locity control. The position and velocity control is conducted
through the redundant degree of range space of B, that is
null space of B, specifically {I − B+B}. rd is the desired
position vector of the end-effector along to the constrained
surface and r is the real position vector on it. KP and
KV is needed to be set with a reasonable value, otherwise
high-frequency oscillation of position error may appear. The
controller presented by Eq.(11) and Eq.(12) assumes that the
constraint condition C = 0 be known precisely even though
the grinding operation is a task to change the constraint con-
dition. We need to observe time-varying constraint condition
in real time using grinding tip as a touch sensor. The time-
varying condition is estimated as an approximate constrained
function by position of the manipulator hand, which is based
on the estimated constrained surface location. The estimated
condition is donated by Ĉ = 0(in this paper, ‘̂” means the
situation of unknown constraint condition). Hence, a(q, q̇)
and B(q) including Ĉ are changed to â(q, q̇) and B̂(q) as
shown in Eq.(13) and Eq.(14). They were used in the later ex-
periments of the unknown constrained condition. As a result,
a controller based on the estimated constrained condition is
given as Eq.(15) and Eq.(16).
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4
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−1
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τ̂ = −B̂+(q){fnd − â(q, q̇) − B̂(q)JR
T ft}

+{I − B̂+(q)B̂(q)}k̂ (15)

k̂ =
(

∂r

∂q

)T

{KP (r̂d − r) + KD(ṙd − ṙ)} (16)

4 ON-LINE ESTIMATION METHOD
In the preceding section, shape-grinding method is solved

in our research. But how to estimate the unknown constraint
surface is the key point. Here, an unknown constrained con-
dition is assumed as in the following.

1 The end-point position of the manipulator during the
grinding task can be surely measured and updated.

2 The grinding task is defined in the x − y plane.

3 When beginning to work, the initial condition of the end-
effector is known and it has touched the work object.

Like the situation shown in Fig. 2, the grinding surface is not
a simple straight line or some curve line which can be de-
fined and expressed by some certain curve equation. Grind-
ing robot has no idea since input torque cannot be derived
without constraint condition. To solve this problem, we con-
sider that some kind of on-line estimation function is uti-
lized to imitate the unknown grinding surface, to obtain an
unknown constraint condition, which can be used to calcu-
late the input torque. Therefore, now let us take a look at
Fig. 2. Point(xi−1, yi−1) and Point(xi, yi) are known be-
cause they are just ground by the grinder and the information
of points (xi−1, yi−1) and (xi, yi) can be derived through the
position of robot’s end-effector. In this paper, for building an
estimation function, spline function and function and bezier
function are used.

link1

link2 grinder

(�� , ��)
(����, ����)

(��	�, ��	�)

(�
, �
)

Grinding Surface

Fig. 2. On-line estimation model

4.1 A quadratic spline curve
A quadratic spline function is generated by two points and

is expressed by the expression

S(xi) = αi(xi − xi−1)2 + βi(xi − xi−1) + γi (17)

Firstly, let Si(xi) satisfy the following conditions shown in
Fig. 3.

(A)Go through the two ends of interval

yi−1 = Si(xi−1) (18)

yi = Si(xi) (19)

　 (B)First-order differential of the spline polynomials is
equal at the end-point of the adjoined function.

S′
i+1(xi) = S′

i(xi) (20)

From the relation among (17)-(20), we can obtain:
γi = yi−1 (21)

βi+1 = 2ui − βi (22)

αi =
βi+1 − βi

2hi
(23)

Where hi = xi − xi−1，ui = yi−yi−1
hi

.
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Spline curve

Si(xi) = yi

SiÄ1(xiÄ1) = yiÄ1

S0i(xi) = S
0
i+1(xi)

Ii = [xiÄ1; xi]

Fig. 3. Generation of quadratic spline curve

4.2 A quadratic function curve
A quadratic function is generated by three points and is

expressed by the expression

f(xi) = αix
2
i + βixi + γi (24)

(����, ����)

(�� , ��)

(���	, ���	)

Quadratic function

f(xi) = ãix2i +åixi +çi

Fig. 4. Generation of quadratic function

αi =
(xi − xi−2)(yi−1 − yi−2) − (yi − yi−2)(xi−1 − xi−2)

(xi − xi−2)(xi−1 − xi−2)(xi−1 − xi)
(25)

βi = {(xi−1 − xi−2)(yi − yi−2)(xi−1 + xi−2)

−(yi−1 − yi−2)(xi − xi−2)(xi + xi−2)}
/(xi − xi−2)(xi−1 − xi−2)(xi−1 − xi) (26)

γi = yi−2 − αix
2
i−2 − βixi−2 (27)

4.3 A quadratic bezier curve
A quadratic bezier function is generated by three points

and is expressed by the expression

b(t) =
2∑

i=0

Bn
i (t)bi (28)

Where Bn
i (t) = nCit

i(1 − t)n−i. As shown in Fig.5, the
bezier curve is generated by repeatedly acquiring the inter-
nally dividing point of the line segment from given points.
bezier curve passes through the start and end points, but does
not pass through the midpoint.

�
�

�

1 − �1 − �
1 − �

��

��

��

��

�	

�(�)

Bezier curve

Fig. 5. Generation of quadratic bezier curve

5 EXPERIMENT
The experimental equipment is shown in Fig.6. In this ex-

periment, we use grinding robot and an articulated robot(RV-
20F) for grinding. A car bonnet is used as a target for this
experiments. The target appearance is shown in Fig.7. We
conducted grinding experiment with on-line constraint es-
timation by spline curve and quadratic function and bezier
curve. For experimental condition, grinding time is set to
10[s], grinding area is x[0.0,15.0][mm].

�

�

�

RV-20F

Grinding Robot

Fig. 6. Experiment environment

Grinding area

Fig. 7. Grinding area
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Fig. 8. Experiment result of x direction, y direction and constrained force for each approximation curve

Fig. 9. Result of torque τ̂1,2 by each curves

Figure 8 shows the experimental result of grinding opera-
tion in x direction, y direction and constrained force for each
carve approximation. For Fig. 8, (a-1)-(a-3) show the result
of spline curve approximation, (b-1)-(b-3) show the result of
quadratic function approximation, and (c-1)-(c-3) show the
result of bezier curve approximation. For Fig. 8 (a-1), (b-
1) and (c-1) shows x direction. The steady-state error occur
about 2[mm] among measured value and desired value for
each curve approximation. As for the result of on-line con-
straint estimation, experimental result is compared with error
among measured value and desired value in y direction. The
dotted line shows desired value generated by each curve ap-
proximation and the solid line shows the hand trajectory of
grinding robot. In Fig. 8, the result of spline curve approx-
imation shows that large errors generated. In the method of
quadratic function approximation,

errors of 1[mm] or more occur. However the result of bezier
curve approximation shows that errors did not occur more
than 1[mm]. In this experiment, constrained force was mea-
sured by force sensor attached to grinding robot. The force
sensor is used only to measure constrained force and not to
control the grinding robot. When compared bezier curve with
spline curve in constrained force, amplitude of vibration in
the result of bezier curve is smaller than spline curve. Figure
9 shows change of torque generated in each joint by spline
curve, quadratic function and bezier curve, respectively. As
shown in Fig. 9, amplitude of vibration for torque generated
in spline curve approximation is bigger than bezier curve and
quadratic function. For this experiment result, the estima-
tion result for y direction by each approximation curves are
related to the size of the amplitude vibration.
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Figure 10, Figure 11 and Figure 12 shows, in each curve
approximation, experiment result of y direction (a) for 3.2
seconds to 3.6 seconds and (b) and (c) show the calculated
torque of each joint in the grinding joint for 3.2 seconds to
3.6 seconds. For each experiment result of y direction (a),
errors among measured value and desired value generated in
3.4 seconds by on-line estimation for each curve approxima-
tion. In this time, the vibration of the calculated torque for
each curve generated corresponding to experiment results of
y direction in 3.4 seconds. As a result, the result of shape
estimation affect torque control for each joint.

703

704

705

706

707

708

3.2 3.3 3.4 3.5 3.6

y
[m

m
]

Time[s]

-10

-5

0

5

3.2 3.3 3.4 3.5 3.6

-10

-5

0

5

3.2 3.3 3.4 3.5 3.6

Time[s]

Time[s]

T
o

rq
u

e 
o

f 
li

n
k

1
[N

m
]

T
o

rq
u

e 
o

f 
li

n
k

2
[N

m
]

Fig. 10. Result of y position and torque τ̂1,2 by spline curve
from 3.2[s] to 3.6[s]
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Fig. 11. Result of y position and torque τ̂1,2 by quadratic
function from 3.2[s] to 3.6[s]
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Fig. 12. Result of y position and torque τ̂1,2 by bezier curve
from 3.2[s] to 3.6[s]

6 CONCLUSION
In order to verify the feature of the proposed force-

sensorless force/position hybrid control, the experiments of
the proposed force/position hybrid control method were exe-
cuted for three approximation curves. From the experimen-
tal results, so generated errors among measured value and
desired value affect torque control for each approximation
curve, it was shown that it is better to use bezier curve that
generated the smallest errors of three approximation curve.
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