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Abstract: Nowadays, the production field is increasingly starting to use the automated guided vehicle (AGV) to assist employees
in daily work. The difficulty lies in enabling the robot to recognize the position and size of the moving object in real-time. To
meet the demand, we propose a real-time human-following and recognition system for AGV based on visual servoing. Using
the dual-eye camera, it can estimate the relative position and size of the target and control AGV to achieve human tracking in
real-time. Besides, a Real-time Multi-step Genetic Algorithm (RM-GA) and newly designed projection-based 3D perception
(Pb3DP) method are used to improve the robustness of the recognition system against changes of light. The experimental results
confirmed that the proposed system could recognize the relative position, detect the size of the target accurately without build
complex models in advance, then drive the mobile robot to follow it. Besides, it provides high robustness against disturbances
that the influence of the captured camera images under different lighting conditions.
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1 INTRODUCTION

A widespread phenomenon in nature is that most creatures
rely on two main eyes to obtain visual information [1]. Since
the dual-eye can stereoscopically visualise the information
through visual differences even in a changing environment,
thereby, animals can locate the target in space, then estimate
the size, distance, and the 3D pose from it. However, it is
difficult for a robot without stereo vision to achieve that de-
mand, especially if the target object is unique without an ar-
tificial marker, and the shape is arbitrary. Further, the object
is moving under changing light environment.

To solve these problems, the model-based method is one
way using the model of a target object [2]. Although it
can detect the distance of the target object from a monoc-
ular vision, its accuracy is lower than that of stereo vision
[3]. Besides, stereo vision is more sensitive to the object’s
pose variation than monocular vision. Researches are using
RGB-Depth(RGB-D) camera, one RGB camera and depth
sensor with infrared light, to improve the distance detection
of monocular vision and conduct picking and placing or vi-
sual servoing tasks [4]. RGB-D sensors such as the Microsoft
Kinect, Intel RealSense, and the Asus Xtion. A depth im-
age is computed by calculating the distortion of a known
infrared light pattern which is projected into the scene [5].
These studies still rely on target detection or segmentation
from a single image and cannot directly use the depth point
cloud for target detection. However, RGB-D camera gener-
ates depth point cloud corresponding to the individual image.

Therefore, many studies utilise the deep learning methods
for target detection [6]-[8]. But, it requires many pictures
and pre-training time. Some other studies use model-based
method to simplify preliminary preparations [9]. But both of
them cannot avoid the disadvantage of RGB-D camera, i.e.,
missing depth data caused by the depth sensor. Some pixels
do not have corresponding depth data [10]. And bright am-
bient illumination can affect the contrast of infrared images
in the active light sensors, resulting in outliers or holes in
the depth map [11]. Unlike optical infrared and electric-field
sensing, stereo vision is more robust to varying target mate-
rial properties and light conditions [12]. It is not dependent
on capacitance, reflectivity, or other material properties, as
long as the target surface has some visible features. For the
above reasons, the research proposed in this paper is based
on stereo vision, i.e., dual RGB cameras. With a dual-eye
camera, we proposed a human-following autonomous mobile
robot system based on the new projection-based 3D percep-
tion (Pb3DP) method. The non-contact size, distance detec-
tion and human-tracking experiments were conducted under
different light conditions. The results show that the system
is robust to light changes under different lighting conditions
during tracking.

2 METHODOLOGY COMPARISON

As mentioned above, RGB-depth(RGB-D) camera
method is being used by many researchers. Therefore, this
chapter will compare the methodology of the RGB-D camera
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Fig. 1. The schematicof RGB-DC method

method and Pb3DP method.

2.1 RGB-Depth Camera Method Using Stereo Vision

In terms of depth camera technology, Microsoft and In-
tel are the primary researchers in this field. Its representa-
tive products are Microsoft Kinect and Intel RealSence. In
principle, the depth camera technology used by the two com-
panies mainly uses the Time-of-Flight (ToF) law, which is
shown as Fig.1. Its workflow is as follows: (1) infrared
light or coded light is emitted from the infrared projector to
the scene(including background and object) to be measured.
Then, the infrared receiving camera(depth camera) Fig.1.(3)
will capture the reflected light Fig.1.(2). Based on the time
it takes the light to travel from the camera to the scene and
back, the distance from the camera to the scene can be esti-
mated. This method can obtain the depth map or depth point
cloud image of the target scene, and it can read the colour of
the target object with its matching RGB camera, Fig.1.(4).

The main advantage of this method is that the depth in-
formation in the scene can be discretised, and distance mea-
surement can be performed in a dark environment, which is
conducive to extracting objects from the background or re-
moving the background. However, due to the discretisation
process, the critical information of depth cloud points in the
image may be lost, especially when the object is moving or
partially covered, which makes the measurement inaccurate.
On the other hand, since the depth information and position
information of the images are obtained using different cam-
eras, which leads to poor performance in real-time.

2.2 Projection-based 3D Pose Estimation Method Using

Stereo Vision

In the proposed projection-based 3D perception method,
the main purpose is to use the image of the arbitrary target’s
image to estimate it’s pose. The schematic is shown as Fig.2,
(1) target object is selected in the scene in one of the stereo
cameras, (2) the selected 2D target is inversely projected in
3D space with assumed pose, (3) the target in 3D space is
projected again into the other camera scene, (4) if the tar-
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Fig. 2. The schematic ofPb3DP method

get projected through assumed pose happens to be matched
with the real target in the camera scene, then the assumed
pose represents real target’s pose in 3D space. In addition,
Real-time Multi-step GA (RM-GA) [13] is exploited as the
optimization method to process the dynamic image.

The main advantage of this method is that as long as an ar-
bitrary target object is selected in the image, the pose of the
object relative to the camera coordinate system and the robot
coordinate system in space can be known immediately. And
the target does not need a specific marker. Then, accord-
ing to the pose of the recognized object in space, the robot
can track the object in real-time, even when it is moving. In
other words, it only needs to select any object in the picture
to complete the model construction, without prior knowledge
or long-term target training process. The object parameters,
including the distance and position to the camera or mobile
robot and the size, can be obtained immediately. Then these
parameters can be more directly used for real-time object dy-
namic tracking. The disadvantage is that when the ambient
light is too dark, the recognition effect will be reduced.

3 HUMAN-FOLLOWING AUTONOMOUS MO-

BILE ROBOT SYSTEM

3.1 System overview

The human-following autonomous mobile robot system
consists of three parts. The sensor part that takes in the image
uses two cameras. The camera uses Sony’s ”FCB-IX11A”
camera with a video rate of 30 fps. The traveling part uses
a two-wheel-drive cart type mobile robot. The PC for recog-
nition and control uses the PC of Interface, which has 4 PCI
slots. An overview of the system is shown in Fig.3.

3.2 Pose and size estimation method

3.2.1 The Establishment of a Model

In the conventional visual servoing method, the model that
created beforehand limits the visual servoing system because
they can only recognize the assigned target objects. In order
to realize the recognition of the arbitrary objects, the mod-
els in Pb3DP are designed to be created at any time. In this
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section, the establishment of the model will be described.
Figure 4 shows the process of model building. In the fig-

ure, a male is set as a target object. The model used in this
method consists of a 2D point cloud, and each sampling point
contains the colour information of the image at that point lo-
cation. The colour information is used to evaluate the recog-
nition results. In Fig. 4 (a), the original image from the left
camera is read as a basement to generate a model, and the co-
ordinates of the left camera image are defined asΣIL. ΣIL

’s origin is located in the centre of the left camera image.
Select the size and location of the generated model manu-
ally. Sample points are then generated in the model area at
regular intervals. The arbitrary position of the point in the
model created in the left camera coordinate system is speci-
fied asILr j

Mi. As shown in Fig.4(b), the human body model
is completely contained in the model area. However, since
the shape of the model is set to a rectangle and the shape of
the target is usually irregular, it is inevitable to include some
background in the selected area. Therefore, it is necessary to
distinguish the background from the model. Therefore, the
model consists of an inner region (Sin) and an outer region
(Sout), whereSin represents the target object andSout rep-
resents the background. As shown in Fig.4(c), the outer area
surrounds the inner area as a subtraction to obtain accurate
and accurate recognition results. The outer area is generated
at the same regular interval around the inner area.

Unlike the models used in the position-based and image-
based method, the model in the Pb3DP method consists of
2D points instead of features, which means that the model
can always be adjusted no matter what the target looks like.
Besides, the Pb3DP method uses the raw image without any
imaging processing to avoid processing time and image dis-
tortion that may occur in image processing technology.

3.2.2 The kinematics of stereo-vision

The coordinates of this system are shown as Fig. 5. It is
utilised eye-in-hand configuration and two cameras to com-
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plete stereo vision. The coordinate systems of two cameras
and target object consist of world coordinate systemΣW , ith

model coordinate systemΣMi
, hand position coordinate sys-

tem ΣH , left and right camera coordinate systemΣCL and
ΣCR, left and right image coordinate systemΣIL andΣIR,
coordinate system of target objectΣM , and they are shown
in Fig. 5. The position vectors of an arbitraryjth point in
the ith 3D model coordinateΣMi based on each coordinate
system are as following:

• W r j
Mi: position of an arbitraryjth point on ith 3D

model based onΣW .

• Mirj : position of an arbitraryjth point onith 3D model
in ΣMi, whereMirj is a constant vector.

• CLr j
Mi andCRr j

Mi: position of an arbitraryjth point
on ith 3D model based onΣCL andΣCR.

• ILr j
Mi: the position ofjth point of ith model in left

image coordinate systemΣIL

• IRr j
Mi: the position ofjth point of ith model in left

image coordinate systemΣIR
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The homogeneoustransformationmatrix from the left
camera coordinate systemΣCL to the 3D model coordinate
systemΣMi is defined asCLT M (HφMi, q), whereHφMi is
ith model’s pose based on the robot hand coordinate system
ΣH andq means robot’s joint angle vector. The pose ofith

3D model, including three position variables and three orien-
tation variables in quaternion based onΣH , are represented
as

HφMi = [HxMi,
HyMi,

HzMi,
Hε1Mi,

Hε2Mi,
Hε3Mi]

T .

(1)
Meanwhile, the projective transformation matrix is given

as following

P (Czj) =
1

Czj

[
f/ηx 0 Ix0 0

0 f/ηy
Iy0 0

]
. (2)

Therefore, thearbitrary point of target object naturally
projected result inΣIL andΣIR can be given as,

ILrM = P (CLzj)CLrM

= P (CLzj)CLT H
HT M (φM , q)Mr (3)

IRrM = P (CRzj)CRrM

= P (CRzj)CRT H
HT M (φM , q)Mr (4)

On the other hand, the inverse projection transformation
matrixP + can be achieve based on Eq.(2) as

P +(Czj) = Czj




ηx

f
0 0 0

0
ηy

f
0 0




T

(5)

where, theCzj is thedistancefrom the coordinate ofΣMi

to ΣCL, which is assumed by RM-GA.

Mirj =Mi T CL
CLrj

Mi (6)

=Mi T CL

[
P +(CLz j

Mi)
ILr j

Mi + (I4 − P +P )l)
]

Then the position from the perspective ofΣH to model
can be calculated by the following equation:

Hrj
Mi =H T j

Mi
Mirj (7)

Following the previous step, the upper-left corner coor-
dinates, lower-left corner coordinates, and model size in the
model are set as follows:

HzM
Hzíx

Hzíy

Fig. 6. Gene information

Fig. 7. Flowchartof RM-GA

• (MTLx, MTLy): x and y coordinates of the upper-left
corner of the model of the selected model based onΣH .

• (MBRx, MBRy): x and y coordinates of the lower-right
corner of the model of the selected model based onΣH .

• HhM andHwM : height and width of the target inΣH

Then, based on the position of any point in space in theΣH ,
the size of the object can be calculated with Eq.(8) in the
selected model .

{
HhM = MBRy −MTLy

HwM = MBRx −MTLx

(8)

3.3 Real-time Multi-step GA (RM-GA)

In Pb3DP method, searching all possible pose of target ob-
ject through calculating the fitness value is time-consuming
for real-time pose estimation. Therefore, the problem of rec-
ognizing the target object’s pose can be transformed into a
optimization to find the maximum value of fitness. In Pb3DP,
we employed Real-time Multi-step GA (RM-GA) to satisfy
the real-time recognition in 30 FPS. The reason why we
choose RM-GA has been discussed in [13].

In proposed RM-GA, each chromosome includes 24 bits
for searching three parameters: ten for position and four-
teen for orientation as shown in Fig.6. Figure 7 shows the
flowchart of the Real-time Multi-step GA. The RM-GA op-
eration is conducted in the sequence as evaluation, sorting,
obsolete, crossover and mutation. These operations are re-
peated several times in 33[ms] to generate the best individ-
ual.
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4 RECOGNITION AND TRACKING EXPERI-

MENT

To confirm the effectiveness of the recognition and track-
ing performance of the system, this chapter is mainly divided
into two parts. Firstly, the accuracy experiments in the static
state were carried out, primarily to determine the measure-
ment accuracy of the system for distance and size. The sec-
ond part is the tracking experiments under normal light and
backlight conditions.

4.1 Static cognitive experiment

The role of static cognitive experiments is mainly to con-
firm the effectiveness and accuracy of cognitive systems. Es-
pecially in the estimation of the target distance and size,
the RM-GA [13] is used to perform 5,000 consecutive cog-
nitions(33ms/times) to find the optimal match between the
model and the object and then calculate the distance and
size. The steps of experiment are as follows: (1) Regard a
male with hight=176.5mm and width=557.2mm as subject
and create a model at 4000mm(initial position), shown in
Fig.8; (2) Keeping the above-selected model size unchanged,
use the Real-time Multi-step GA (RM-GA) [13] to recognise
the 5000 generations at 4000mm under normal indoor light
(182lux-188lux); (3) Collect and record experimental data in
real-time.

The results are shown in Fig.9 and Tab.1. It can be seen
that during the evolution of the 5000-generation RM-GA, the
relative error (RE) of the distance and size of the recognition
system to the target was less than 0.4 %, and the relative stan-
dard deviation (RSD) was less than 0.7 %.

Table 1. Data analysis for static experiment

Class Fitness Distance HhM
HwM

Unit - (mm) (mm) (mm)

AVERAGE 0.777 4012.152 1760.622 558.246
STDEVPA 0.013 28.096 11.772 3.733

RSD 1.713% 0.700% 0.669% 0.669%
RE - 0.304% 0.27% 0.188%

Fitness valueThe recognized distance along z
h
-axis

The recognized height

The recognized width

Changes of light 

Fig. 9. Result ofstaticexperiment
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Fig. 10. Tracking experiments under different lighting con-
ditions

4.2 Tracking experiment

Based on the static cognitive experiment, the purpose of
the tracking test is to determine whether the cognitive sys-
tem can still capture and tracking the target when it is mov-
ing, especially under different light environments. The ex-
perimental steps are as follows: (1) Regard a male with
hight=176.5mm and width=512.5mm as subject and create
a model at 4000mm(initial position), shown in Fig.8; (2)
Keeping the above-selected model size unchanged, and track
the movement of human object under normal indoor light
(172lux-400lux), natural light (37lux-4lux) and back-light
(4lux-30lux) conditions, shown in Fig.10; (3) Collect and
record experimental data in real-time.

The tracking results are shown from Fig.11 to Fig.13.
Among them, Fig.11 and Fig.12 are the results under natural
light conditions. It can be seen from the figure that the size
of the object at 4000mm is (613.14mm,1757.68mm). Under
natural light,Fitnessmin1= 0.39, and the recognition dis-
tance fluctuates between 3740.47 to 4283.2, average value is
DisAve1=4005.41mm. Under the backlight,Fitnessmin2=
0.65, and the distance ranges between 3673.82 to 4525.39,
with an average value ofDisAve2=4058.10. Under the in-
door lighting,Fitnessmin3= 0.76, and the distance fluctu-
ates between 3619.14 to 4490.23,DisAve3=4131.56mm.
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Fig. 11. Results of trackingunder natural light condition
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Fig. 12. Results oftrackingunder back-light light condition

5 CONCLUSION
To achieve better tracking and size recognition in a va-

riety of light intensity environments, especially in chang-
ing light or backlight conditions. This paper proposes a
method based on a Real-time Multi-step Genetic Algorithm
(RM-GA) and newly designed projection-based 3D percep-
tion (Pb3DP) method. The experimental results show that the
system can detect the distance and size with high accuracy in
the static test. In the dynamic tracking experiment, it can
still reach excellent tracking accuracy even under changing
light(including low light and backlight) conditions. However,
it should be mentioned that the system cognitive fitness is
lower in a changing(from bright to dark) and low light inten-
sity environment. Authors believe that the problem primarily
lies in the initial fixed model parameters, which are difficult
to match with the initial model parameters in a changing light
environment. Therefore, the next research direction will try
to use real-time models for cognitive experiments. In short,
this study effectively validates the robustness of the proposed
system in a variable light environment and offers a new solu-
tion for robotic visual servoing.

Fitness value

The recognized distance along z
h
-axis

The recognized height

The recognized width

Changes of light 

Fig. 13. Results of trackingunder indoor light condition
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