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Abstract
RANdom SAmple Consensus (RANSAC) has been applied to many 3D image processing problems such as homography 
matrix estimation problems and shape detection from 3D point clouds, and is one of the most popular robust estimator meth-
ods. However, RANSAC has a problem related to the trade-off between computational cost and stability of search because 
RANSAC is based on random sampling. In our previous work, we proposed Adaptive Evolution Strategy SAmple Consensus 
(A-ESSAC) as a new robust estimator, and we applied ESSAC to the homography matrix estimation for 3D SLAM using 
RGB-D camera. A-ESSAC is based on Evolution Strategy to maintain the genetic diversity. Furthermore, ESSAC has two 
heuristic searches. One is a search range control for reducing the computational cost of RANSAC. The other is adaptive/
self-adaptive mutation for changing the search strategy of A-ESSAC according to the best fitness value. In this paper, we 
apply A-ESSAC to 3D reconstruction method using two cameras, and we show an experimental result, and discuss the 
effectiveness of the proposed method.

Keywords Evolutionary computation · Robust estimator · 3D reconstruction

1 Introduction

Recently, 3D image processing technologies have excelled 
with the development of 3D distance measurement sensors 
such as Lidar and RGB-D camera. These kinds of sensors 
enable to perform the 3D image processing in real time and 
many kinds of applications related to the 3D image pro-
cessing have been proposed in the fields of robotics and 
Intelligent Transport Systems. However, the measurement 
data of the 3D distance measurement sensor includes many 
noises according to the environments such as the material 
of the measurement object and the lightning condition. To 
estimate a model from the noisy dataset, RANdom SAmple 
Consensus (RANSAC) proposed by Fischer and Bolles is 
one of the most popular algorithms in robust estimator [1]. 

RANSAC has been applied to many 3D image processing 
problems such as homography matrix estimation problem 
and shape detection from the 3D point clouds [2–4]. How-
ever, one of the problems in RANSAC is a sampling bias in 
a search since it selects candidate pairs from a data set of 
pairs randomly. To solve the problem of RANSAC, many 
researchers have improved RANSAC algorithm. Choi et al. 
[5] gave a critical survey of RANSAC family algorithms. 
They synthesized seven research axes that were Partial 
Evaluation (e.g., Progressive RANSAC), Adaptive Termi-
nation (e.g., uMLESAC), Adaptive Evaluation (e.g., pbM-
estimator), Local Optimization (e.g., LO-RANSAC), Model 
Selection (e.g., MAPSAC), Loss Function (e.g., MLESAC), 
and Guided Sampling (e.g., GASAC). These research axes 
were discussed from different objectives: being fast, being 
robust, and being accurate.

In this paper, our objective is to reconstruct 3D point 
cloud from two cameras in real time from the noisy data-
set.Therefore, we focus on evolutionary computation for 
RANSAC family algorithms because Genetic Algorithm 
SAmple Consensus (GASAC) proposed by Rodehorst and 
Hellwich [6] can improve the performance of the search 
capability by a population-based multi-point search. 
However, it is sometimes difficult to maintain the genetic 
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diversity in the search if the large size of outliers is included 
in a data set. To solve this problem, Shojaedini et al. pro-
posed the modified GASAC as Adaptive Genetic Algorithm 
Sample Consensus (AGASAC) by applying the adaptive 
mutation, crossover and learning roulette wheel selection 
to GASAC algorithm [7]. AGASAC can change the domi-
nant operators (mutation and crossover) according to the 
fitness values in the gene set. Using these new operators, 
Shojaedini et al. showed AGASAC outperforms GASAC. 
However, these kinds of evolutionary computation methods 
require more computing time than any other SAC methods. 
Therefore, we must deal with the trade-off between compu-
tational cost and stability of search.

There are two possible approaches to improve the trade-off. 
One is to change the strategy of the local search and global 
search efficiently. This kind of approaches can control the 
genetic diversity of a population to improve the stability in 
evolutionary search. The other is to manage the search range 
in the dataset according to the current search result. This kind 
of approaches can remove obvious outliers from a dataset. 
However, the feasible solutions of the model parameters are 
required to discriminate inliers from outliers. This means that 
the discrimination of inliers and outliers requires model param-
eters, while the estimation of model parameters requires a set 
of inliers. This is a nesting structure each other. In our previ-
ous work, we proposed Adaptive Evolution Strategy SAmple 
Consensus (A-ESSAC) as a new robust estimator method to 
improve the trade-off between computational cost and stability 
of search in RANSAC. Furthermore, we applied A-ESSAC to 
3D map building method using RGB-D camera for realizing 
the real-time 3D SLAM [8]. In this paper, we apply A-ESSAC 
to 3D reconstruction method using two cameras for verify-
ing the effectiveness and possible application of A-ESSAC. 
This paper is organized as follows. Section 2 explains our 3D 
reconstruction method. Section 3 explains A-ESSAC. Sec-
tion 4 shows experimental results of the proposed method.

2  3D reconstruction using two cameras

2.1  Algorithm of 3D reconstruction

In this paper, we focus on 3D reconstruction from two cam-
eras. Our 3D reconstruction method uses a local feature 
extraction method for reconstructing the sparse point cloud 
data. For the local feature-based 3D reconstruction method, 
the algorithm can mainly divide into two steps. One step is 
the image processing step that is for searching correct cor-
responding points between two camera data. The other is the 
matching step of 3D point clouds using the relation between 
two data. In these algorithms, a homography estimation 
method such as RANSAC is required for extracting the cor-
responding points. Therefore, we deal with the 3D modeling 

method as an application of our method. Figure 1 shows the 
flowchart of this algorithm. In Fig. 1, the tth measurement 
data from left and right camera are expressed by DL(t) and 
DR(t) , respectively. Specifically, the possible pairs of cor-
responding points between DL(t) and DR(t) are generated by 
extracting any features of camera image. However, the pairs 
include many mismatched pairs when the pairs are gener-
ated. Therefore, the homography matrix is estimated using 
A-ESSAC (our proposed method) to remove the mismatched 
pairs. Finally, the coordinate transform matrix is estimated 
using 3D distance information of the corresponding points 
to update 3D environmental map.

2.2  Feature extraction

This subsection explains the detail of feature extraction and 
matching method. Recently, various types of local features 
have been proposed for the object recognition and extract-
ing the corresponding points from multiple images. In local 
features, Scale-Invariant Feature Transform (SIFT) and 
Speeded Up Robust Features (SURF) are the most com-
monly used to extract the corresponding points from the 
multiple images [9, 10]. These local features are robust to 
the change of illumination and local affine distortion of 
images. Especially, SURF proposed by Bay et al. is based 
on 2D Haar wavelet responses as a robust local feature detec-
tor inspired by SIFT. The standard SURF is several times 
faster than SIFT. Furthermore, we must reduce computa-
tional time as much as possible in real-time image process-
ing. General-purpose graphics processing unit (GPGPU) 
has been applied to calculate and extract features in real-
time. In this paper, we use SURF implemented on GPGPU 
to describe features for pattern matching between the left 
and right camera images. After extracting SURF from the 
two images, each SURF feature is described by a vector 

Fig. 1  Flowchart of proposed 3D modeling method
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containing 64 or 128 elements. An initial set for estimating 
homography matrix (possible pairs of corresponding points) 
is obtained by selecting the pairs with the minimum Euclid-
ian distance of the feature vector between the left and right 
camera images (Fig. 2).

2.3  Homography estimation

After the feature extraction and matching, we should extract 
the correct pairs of corresponding points from the dataset 
of possible pairs. In many researches, homography matrix 
is estimated for extracting the correct pairs [11, 12]. In 
this way, the homography matrix estimation problem is 
one of the most important problems not only in 2D image 
processing but also in 3D image processing because the 
matrix is required in various types of 3D image processing 
such as stereovision [12] and 3D environment map build-
ing. The homography matrix H that has 9 elements is the 
matrix that describes the relation between two images. Fig-
ure 3 displays the concept image of homography matrix 
between two images. The set of homogeneous image points 
{�i}(i = 1,… , n) as viewed in the first image is transformed 
into the set �′

i
 in the second image, with the positions related 

by

where �i and �′
i
 are homogeneous three vectors � = (x, y, 1)T , 

�� = (x�, y�, 1)T because the matrix � is composed of 3 × 3 
matrix. In addition, Eq. (1) can be also defined by the fol-
lowing equation:

where a1–a8 are the parameters. Therefore, the homography 
matrix is estimated by estimating these eight parameters. 
Estimating the homography matrix between two images 
enables to extract the correct pairs of corresponding points. 

(1)��
i
= ��i,

(2)x� =
a1x + a2y + a3

a7x + a8y + 1

(3)y� =
a4x + a5y + a6

a7x + a8y + 1
,

However, the set of possible pairs includes many mismatch 
pairs. Therefore, robust estimators are applied to this prob-
lem [13, 14].

2.4  Update of 3D model

The update of the 3D model is to obtain the position 
��
ri
= (x�

ri
, y�

ri
, z�

ri
) of a pixel in the 3D space based on the posi-

tion �ri = (xri, yri, zri) according to the relationship between 
(x�

i
, y�

i
) and (xi, yi) . An interactive closest point (ICP) algo-

rithm is one of the most widely used methods of matching 
a set ( Xr ) of points with point clouds ( X′

r
 ) in 3D space [15]. 

The error function to be minimized is defined as

where � is the rotation matrix; � is the translation vector; 
We apply the unit quaternion proposed by Horn [16]. The 

(4)E(�, �) =
1

Nc

||||||

||||||

Nc∑
i=1

���
ri
+ � − ���

||||||

||||||
,

Fig. 2  A result of the feature extraction and matching using SURF. 
Red circles and green lines indicate feature points and matching 
results, respectively

Fig. 3  Concept image of 2D homography, where �� indicates an esti-
mated point of the ith point using the homography matrix �



 Artificial Life and Robotics

1 3

quaternion is defined as q̂ = (q0, q1, q2, q3) . First, the center 
of gravity (COG) of each point cloud is calculated by the 
following:

where Nc is the number of points in each point cloud. Next, 
the relative position from the COG is calculated in the 
following;

Next, Sab is defined as

According to Sab , a matrix � is defined as

Here the eigenvector corresponding to the maximum posi-
tive eigenvalue of � is quaternion ( ̂q ). The rotation matrix 
is obtained by q̂ in the following:

Furthermore, the translation vector is also obtained by � in 
the following:

3  Adaptive evolution strategy sample 
consensus (A‑ESSAC)

3.1  Total algorithm of A‑ESSAC

In ESSAC, the genotype is composed of k candidate data 
needed to calculate the model parameters and the combina-
tion of candidate data is optimized by global search and 

(5)�g
r
=

1

Nc

Nc∑
i=1

�ri

(6)��g
r
=

1

Nc

Nc∑
i=1

��
ri
,

(7)��
�
= ��� − ��

�

(8)���
i
= ��

��
− ���

�
.

(9)Sab =

Nc∑
i=1

��
�
���
�
.

(10)
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hill-climbing search using genetic operators. The fitness 
value fiti is calculated by following fitness function:

where ej indicates the jth error calculated by the following 
equation:

where �� and �′
�
 are homogeneous three vectors defined in 

Eq. (1).
In ESSAC, the fitness function usually uses the number 

of inliers. Therefore, this problem is a maximization prob-
lem. Furthermore, ESSAC has a search range control method 
to reduce computational cost and improve the stability of 
search simultaneously.

3.2  Evolution strategy

Basically, the random sampling required to estimate param-
eters of a mathematical model in the generation of hypoth-
esis is one of combinational optimization problems, but we 
can incorporate local search or heuristics to reduce com-
putational cost. Evolutionary computation (EC) is used 
to solve optimization problem by simulating evolution on 
a computer. From the historical point of view, EC can be 
divided into genetic algorithm (GA), evolutionary program-
ming (EP), and evolution strategy (ES). These methods are 
fundamentally iterative generation and alternation processes 
operating on a set of candidate solutions called a population. 
All the population evolves toward better candidate solutions 
by selection operation and genetic operators (crossover and 
mutation). The selection decides candidate solutions evolv-
ing into the next generation, which limits the search space 
spanned by the candidate solutions. The crossover and muta-
tion generate new solution candidates. However, genetic 
operators used for generating new solution candidates are 
a little different among GA, EP, and ES from the histori-
cal point of view [17]. The important feature of ES is the 
self-adaptation which can self-tune the diversity of mutation 
parameters according to the success records. Rechenberg 
suggested that the ratio of successful mutations to all muta-
tions should be 1/5 [18]. If this ratio is greater than 1/5, 
increase the variance; if it is less, decrease the variance. This 
ratio has often been discussed in the previous studies, but 
the self-adaptive mutation can change the variance of the 
normal random value according to the success ratio based 
on the landscape of a fitness function. While a self-adaptive 

(13)

fiti = fitnessFunction(g(i)) =
∑
j

𝜌(ej)

𝜌(ej) =

{
1 (if ej > 𝜏)

0 (otherwise),

(14)ej = ‖��
�
− ��‖,
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mutation refers to its own fitness record, an adaptive muta-
tion refers to the average, maximum, and minimum of fitness 
values of the candidate solutions in the population, i.e., the 
adaptive mutation relatively changes the distribution of gen-
otype in a population according to the fitness values of the 
candidate solutions. ES was proposed by Rechenberg, and 
extended further by Schwefel. Basically, ES is classified into 
( � + �)-ES and ( � , �)-ES. First, Algorithm 1 presents the 
procedure of a standard ( � + �)-ES. Initialization randomly 
generates an initial population of individuals. Creation ( � ) 
generates � children from � parents by genetic operators 
in a single generation. As a result, the ( � + �)-ES has the 
intermediate population of ( � + � ) individuals. Selection 
( � ) deterministically selects the best � individuals from the 
intermediate population. On the other hand, in ( � , �)-ES, 
Selection ( � ) selects the best � individuals only from the cre-
ated � children ( 𝜇 < 𝜆 ). Therefore, ( � + �)-ES is considered 
as a continuous model of generation, while the ( � , �)-ES is 
considered as a discrete model of generation. Especially, as 
the special cases of ES, (1,1)-ES is a random search, (1+1)-
ES is an iterative improvement method, (1, �)-ES or ( 1 + �

)-ES is a multi-point neighboring search, and ( � + 1)-ES is 
a local hill-climbing search. In our proposed method, the 
search method is mainly based on mutation operators and 
uses self-adaptive mutation since we assume that the data-
set includes a huge number of noises. The mutation opera-
tor is very important to extract the correct pairs from the 
dataset effectively. Therefore, we use ES in this study. In 
ESSAC, we use uniform crossover as a recombination and 
simple mutation that changes genes randomly according to 
the mutation rate. 

3.3  Search range control

ESSAC performs a search range control to reduce computa-
tional cost and improve the stability of search simultaneously. 
This subsection proposes the search range control method that 
is the feature of ESSAC. The step that requires computational 
cost in SAC algorithm is the hypothesis evaluation step. In 
the hypothesis evaluation, the generated model parameters are 
evaluated using all data in a data set S of the possible pairs. 
Therefore, if the data set has a huge mount of data such as 
3D image processing, the computational cost is very expen-
sive. Furthermore, it is difficult to optimize the combination 

of candidate data if the outlier rate in the set S is very high. 
Therefore, in the search range control method of ESSAC, if 
an individual satisfied with starting condition is generated, the 
search space is reduced by removing obvious outliers from 
the data set S. Figure 4 shows the concept image of search 
range control method of ESSAC. Specifically, using the model 
parameters of the best individual and predefined threshold 
𝜏a(𝜏a > 𝜏) , the number of removal data Na and the set Sa are 
calculated as follows:

Furthermore, using Na and Sa , the number of data N and the 
set S are updated as follows:

(15)Na =

N∑
i=1

�a(ei)

(16)Sa ←Sa + {i}

(17)𝜌a(ei) =

{
1 (if ei > 𝜏a)

0 (otherwise) .

(18)N ← N − Na

Fig. 4  Concept image of search range control method in ESSAC
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By removing the obvious outliers from the dataset S, 
ESSAC reduces the computational cost by the number of 
obvious outliers Na in the evaluation step as compared with 
RANSAC algorithm. Therefore, the computational cost of 
ESSAC depends on the rate of the outliers in the dataset 
is significantly reduced as the rate is increased. The model 
parameters are estimated from the updated data set S. In 
addition, the starting condition in homography matrix esti-
mation is defined by

where � is a threshold value. The condition means the ratio 
of the fitness value of the best individual to the number of 
data in the data set. After the search range control method is 
once performed, the obvious outliers are removed from the 
set S when the best individual is improved.

3.4  Adaptive mutation

This subsection explains the adaptive mutation rate that 
enables to change the mutation rate according to the fitness 
value of the best individual to improve the stability and 
accuracy for ESSAC. Because if the outlier rate is high, the 
good combination is not generated even in the later phase of 
the search in some cases. Specifically, the adaptive mutation 
rate is determined by the following equation:

where fitbest is the fitness value of the best individual and Tm 
is coefficient. In this paper, we use Tm = 0.2 ⋅ N . This value 
is empirically determined. On the other hand, the search is 
based on the recombination operator in Eq. (20) when the 
fitness value of the best individual is low during an early 
stage. In Eq. (20), the recombination randomly selects two 
host individuals to maintain the genetic diversity.

3.5  Self‑adaptive mutation

To start search range control method efficiently, the search 
capability of ES is very important since we must search the 
feasible solution from the dataset including the large number 
of outliers quickly. Therefore, we need to control a ratio of 
exploration and exploitation. To control the ratio, ESSAC 
uses a self-adaptive mutation. In the adaptive mutation, if 
the search fails for m times in a row, the mutation rate is 
calculated by following equation:

(19)S ← S − Sa.

(20)
fitbest

N
> 𝛼,

(21)Pm1 = 1 − exp

(
−
fitbest

Tm

)
,

where Pm1 is calculated by Eq. (20). In Eq. (21), the search is 
based on the mutation operator when the fitness value of the 
best individual is low and the mutation rate decreases when 
an individual having good genetic information is generated. 
Therefore, ESSAC can control the ratio using adaptive and 
self-adaptive mutation. Algorithm 2 shows the procedure of 
adaptive ESSAC. 

4  Experimental result

We conducted an experiment on 3D reconstruction to verify-
ing the effectiveness of A-ESSAC in a moving image. Left 
and right images were acquired using a robot arm equipped 
with two cameras and the number of frames is 670 (Fig. 5). 
Figure 6 shows examples of camera images from the left 
camera. Table 1 shows the experimental  parameters of 
A-ESSAC, and these parameters were determined empiri-
cally (Table 2).

Figure 7 shows the experimental result of homography 
matrix estimation between DL(t) and DR(t) and Table 3 
shows the results of a comparison between A-ESSAC, 
RANSAC and GASAC with Simulated Annealing (GASAC-
SA) [19] (The number of trials of each dataset is set to 
1000). A-ESSAC and GASAC-SA outperforms RANSAC in 

(22)Pm2 = 1 − Pm1,
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all of the datasets from the viewpoint of the average fitness 
value since the search capability of the genetic operators. In 
addition, A-ESSAC performs the search range control for 
searching better feasible solution by removing the obvious 
outliers from the dataset. Therefore, the result of A-ESSAC 
is slightly better than that of GASAC-SA. Furthermore, the 
computational time of A-ESSAC is less than the other meth-
ods because of the search range control. From the result, 

Fig. 5  Experimental environment (S and G indicate Start and Goal, 
respectively)

Table 1  Experimental condition and parameter setting

The number of evaluations 1000
The number of trials 10
The number of parents � 100
The number of offspring � 10
Threshold of Inlier/Outlier � 3
Threshold of search range control �

a
10

Initial condition of search range control � 0.01

Fig. 6  Examples of camera images from the left camera

Table 2  Results of a comparison experiment between A-ESSAC, 
RANSAC and GASAC-SA

Step(t) A-ESSAC RANSAC GASAC-SA

Average fitness value (variance)
 1 168.7 (1243) 99.2 (2624) 150.8 (664)
 230 147.2 (900) 58.7 (1619) 143.4 (316)
 380 143.7 (41) 113.5 (660) 139.0 (286)
 670 239.6 (50) 196.7 (1199) 218.6 (234)

Average computational time (variance)
 1 25.8 (47) 52.4 (2) 76.2 (11)
 230 32.6 (197) 50.8 (2) 62.9 (12)
 380 17.8 (3) 30.2 (1) 45.5 (4)
 670 26.1 (5) 44.5 (3) 48.9.5 (5)

Fig. 7  Experimental results of a homography matrix estimation (left 
and right images are the measurement data from the left and right 
cameras, respectively)
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A-ESSAC can improve the trade-off between computational 
cost and stability of search.

Next, Table 3 and Fig. 8 show a result of a comparison 
between A-ESSAC using the adaptive and self-adaptive 
mutations (Eqs.20, 21), A-ESSAC using only the adaptive 
mutation (Eq. 20) and ESSAC using the fixed mutation 
rate in [6] (the mutation rate Pm = 0.125 ) for verifying the 
effectiveness of our proposed mutation strategy. In this 
experiment, the number of trials is set to 1000. From the 
result, our proposed mutation strategy outperforms the 
other mutation strategies in the viewpoint of the average 
fitness value and variance. Furthermore, Fig. 9 shows a 
result of the mutation rate transition for considering the 
result of Table 3. In Fig. 9, the self-adaptive mutation was 
performed in the 5th and 13th generations since A-ESSAC 
could not improve the fitness value for 5 times in a row. 
After these self-adaptations, the search strategy is simi-
lar to the random search method since the mutation rate 
was over 0.4 for increasing the genetic diversity. In the 
47th generation, the best fitness value was improved, and 
the mutation rate was decreased for searching the better 
combination in the current gene set. In this situation, the 
crossover operation is dominant compared with the muta-
tion operator since the mutation rate is less than 0.1. From 
these results, by changing the search strategy according to 
the best fitness value, A-ESSAC could search the feasible 
combination in this result (Fig. 9). Although A-ESSAC 
sometimes gets stuck in a local optimum in some trials 
(e.g. the variance results (t=1 and 230) of the fitness value 
are slightly large), A-ESSAC can recover from such a sit-
uation by extracting the correct pairs between the next 
images. Therefore, the result of 3D reconstruction could 
be stably performed using A-ESSAC (Fig. 10).

Table 3  A result of a comparison experiment between A-ESSAC 
(using Eqs. 20 and 21), A-ESSAC (using only Eq. 20) and fixed value 
in [6]

Average fitness value (variance)

Step(t) A-ESSAC Eq. (20) [6]

35 115.3 (1497) 106.2 (2050) 96.3 (2765)

Fig. 8  1000 Trials result of the comparison experiment shown in 
Table 3

Fig. 9  An example of mutation rate transition (t = 1). Blue and 
Orange dots indicate the result of the mutation rate and fitness value 
of best individual, respectively
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5  Conclusion

In this paper, we applied A-ESSAC to 3D reconstruction 
method using two cameras. At first, we explained the 3D 
reconstruction method from two cameras and defined the 
homography matrix estimation problem. Next, we explained 
A-ESSAC whose search strategy is based on an evolution 
strategy to maintain the genetic diversity. In the experi-
ments, we showed that A-ESSAC outperforms RANSAC in 
the average fitness and computational time and our proposed 
method could reconstruct the 3D model from two cameras. 
However, our proposed method has the problem of the accu-
racy of 3D reconstruction because of accumulated errors in 
each frame. Therefore, we will apply a closed-loop method 
to our proposed method for improving the accuracy of the 
3D model.
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Fig. 10  Experimental result of 3D reconstruction using two camera 
images


	Adaptive evolution strategy sample consensus for 3D reconstruction from two cameras
	Abstract
	1 Introduction
	2 3D reconstruction using two cameras
	2.1 Algorithm of 3D reconstruction
	2.2 Feature extraction
	2.3 Homography estimation
	2.4 Update of 3D model

	3 Adaptive evolution strategy sample consensus (A-ESSAC)
	3.1 Total algorithm of A-ESSAC
	3.2 Evolution strategy
	3.3 Search range control
	3.4 Adaptive mutation
	3.5 Self-adaptive mutation

	4 Experimental result
	5 Conclusion
	References




