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Abstract: In recent years, Autonomous Underwater Vehicles (AUVs) are essential to explore the ocean that humans are unable
to go directly. AUVs could be operated automatically and required to be recharged after the long-term work. In our previous
research, we have conducted the docking experiments with the distance of 600 [mm] from docking station to Remotely Operated
Vehicle (ROV) in real sea using dual-eye cameras. However, it can be difficult to recognize the 3D marker from further distance
owing to the target getting smaller on the screen and the turbid water. In the next step, we need an approaching ability that can
guide AUV to reach the docking range from a greater distance. For this purpose, we proposed a system using 2D model and zoom
cameras in the approaching step. In this paper, the effectiveness of pose estimation that using 2D model with zoom cameras is
confirmed by experiments.
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1 INTRODUCTION

AUVs are applied to seabed exploration, pipeline main-
tenance, oilfield exploration and other fields [1][2]. AUVs
usually have limited working time and moving distance be-
cause of the limited battery capacity. They require recycling
to get recharged, maintain support and transfer data. It is es-
sential to provide an underwater battery recharging system
for AUVs to return to the docking station. There are three
stages in a docking operation: long-distance navigation, ap-
proach and short-distance docking. We have made the short-
distance docking system using visual servoing based ROV in
docking step with the distance of 600 [mm] [3][4]. We used
to perform the approaching step by manual. In the next step,
we need a system that can guide the underwater vehicle from
longer distance automatically in the approaching step.

In the real sea environment, it is hard to observe objects
at a long distance because of the water current disturbance,
turbidity and refraction effect, etc. The main disturbance for
the vision-based underwater vehicle is the turbidity. As the
distance increases, the influence of the turbidity will also in-
crease. That is the reason why we required the system to
have the ability to against the water turbidity. To solve the
issue mentioned above we newly designed a 2D model and
a fitness function. In our previous research, only hue value
was used in fitness function. However, as the level of turbid-
ity increase, it is hard to get the hue information of the 3D
marker from camera images. Therefore, we use a new fitness
function determined by hue and brightness value to improve
the recognition in high turbidity environment. In addition,
the target will be a small proportion in the camera images at
a long distance and hard to be recognized. We may zoom

out the target to make true there is enough proportion of 3D
marker in camera images. Therefore, we also use zoom cam-
eras to check out if the 2D model is useful for pose estimation
at long distance with different focal length.

In this paper, section 2 describes the method of real-time
3D pose estimation. The author will introduce the Model-
based Matching method, 2D model and the fitness function
we used. In section 3, the 3D pose estimation experiment us-
ing 2D model with different fitness function in turbid water
and the approaching experiments using 2D model with dif-
ferent focal length of zoom cameras in air environment are
presented.

2 REAL-TIME 3D POSE ESTIMATION

METHOD

2.1 Model-based Matching Method
In this section, we discuss the 3D-perception based move

on sensing (3D-MoS) based on dual-eye cameras for the un-
derwater vehicle and the 3D pose estimation method. In this
system, the model-based matching method is used to esti-
mate the matching degree between the projected model and
the captured images. The pose estimation based on 2D-to-
3D reconstruction using feature-based recognition is applied
in other conventional methods. The set of image points in
different images to determine the information of the target
object is implemented in that approach. The main drawback
of this approach is the complexity of searching for the cor-
responding point and time taken. Apart from this, we use
the model-based pose estimation approach based on 3D-to-
2D projection to avoid the influence of the wrong mapping

The Twenty-Sixth International Symposium on Artificial Life and Robotics 2021 (AROB 26th 2021), 
The Sixth International Symposium on BioComplexity 2021 (ISBC 6th 2021), 
ONLINE, January 21-23, 2021

©ISAROB 711



points in images using the dual-eye cameras.

Fig. 1. Real target and projected 2D model in 2D images
obtained by the right and left camera

Figure 1 shows the model-based matching method using
dual-eye cameras for 3D pose estimation. ΣH is the refer-
ence coordinate frame of the right camera image and the left
camera image. The 2D model of the real target object in
space is projected naturally to the dual-eyes cameras images
and the dotted 3D marker model where pose is given by the
gene of Genetic Algorithms (GA) is projected from 3D-to-
2D [5]. The different relative pose is calculated by compar-
ing the projected model and the captured images by the dual-
eye cameras. Finally, the best model of the target object that
represents the true pose can be obtained based on its highest
fitness value. There are some works done on visual servo-
ing experiments concerning hand eye manipulator in the air
using 3D model-based matching method utilizing genetic al-
gorithms and dual-eye camera [6][7], which are used as fun-
damental knowledge for this research.

2.2 2D Model and Fitness Function
The 2D model to evaluate object is composed of points.

Figure 2 shows the consistence of the model. There are three
kinds of colors (red, green and blue) in the model to match
the corresponding colors of three spherical balls in the 3D
marker. The inner portion is the same size as the real target
object (3D marker) and the outer portion is the background
area. The points in inner portion are paired with the points
in the outer portion for the calculation of the fitness value.
The points in each portion mean points to calculate the cor-
relation degree on how much the inner portion overlaps the
target object and the outer portion does not overlap the target
object.

The fitness function is constructed to evaluate the match-
ing degree between the projected model and the captured im-
age. The intention of the designed fitness function is to have
a peak at the true position of the target. The construction of
the fitness function affects the optimum search performance.

Fig. 2. Real target and projected 2D model
The calculation of conventional fitness function is based

on hue value. However, as the distance and turbidity level in-
crease. It is hard to recognize the whole marker and the color
in the background also influences the result of recognition. In
that case, the brightness of the marker can still be recognized
by system. So, we propose a new fitness function that adds
the evaluation of brightness value to the conventional fitness
function. At first we describe the conventional function as
Eq. (1)～(3).

In equation (1), N is the number of points in inner por-
tion. Irj represents the I-th point of the model. Irj,in(φi)
is the point that satisfies Irj(φi) ∈ Sin. φi defines the posi-
tion of the model as φi = [x, y, z]. j means the j-th model
given by GA. When the ball of the 3D marker situated in the
corresponding inner portions (red, green, blue) of 2D model,
pH,1(Irj,in(φi)) = +1, otherwise pH,1(Irj,in(φi)) = −1.
If the ball is situated in outer portion, pH,2(Irj,out(φi)) =
−1, otherwise pH,2(Irj,out(φi)) = +1. When the
three balls situated in corresponding inner portions at the
same time. pH,3(Irj,in(φi),I rj,out(φi)) = +2 otherwise
pH,3(Irj,in(φi),I rj,out(φi)) = −1.

f
′

H =
1
N



X

Irj(φi)∈Sin

pH,1(Irj,in(φi))+

X

Irj(φi)∈Sout

pH,2(Irj,out(φi))+

X

Irj(φi)∈Sin
Irj(φi)∈Sout

pH,3(I rj,in(φi),I rj,out(φi))


(1)

To make sure the peak will be situated in the true position
of the marker and the value is in the range of 0 to 1, we use
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Eq. (2) as follows. Hu,sum(u = R, G, B) represents the
number of points overlap the marker in the corresponding
inner portion (red, green, blue) of 2D model.

fH =



f
′
H + 0.5 (4 < HR,sum < 20)∩

(4 < HG,sum < 20)∩
(4 < HB,sum < 20)

f
′
H + 0.3 {(4 < HR,sum < 20) ∩ (4 < HG,sum < 20)}∪

{(4 < HR,sum < 20) ∩ (4 < HB,sum < 20)}∪
{(4 < HG,sum < 20) ∩ (4 < HB,sum < 20)}

f
′
H (otherwise)

(2)

Equation (3) is used to take the average of the fitness value
calculated in left camera images Lf and right camera images
Rf .

F =
1
2
(LfH +R fH) (3)

Newly designed fitness function is based on hue and
brightness value, the calculation of the hue fitness is the same
as Eq. (1),(2). In the calculation of brightness fitness, we take
the difference between the paired points in inner portion and
outer portion. Eq. (4),(5) are used to calculate the bright-
ness fitness. If the difference between the brightness value of
the paired points is over 30, pBr,1(Irj,in(φi),I rj,out(φi)) =
+1, otherwise pBr,1(Irj,in(φi),I rj,out(φi)) = −1. When
the three balls situated in the corresponding inner portion at
the same time, pBr,2(Irj,in(φi),I rj,out(φi)) = +2, other-
wise pBr,2(Irj,in(φi),I rj,out(φi)) = −1.

f
′

Br =
1
N


X

Irj(φi)∈Sin
Irj(φi)∈Sout

pBr,1(Irj,in(φi),
I rj,out(φi))

+pBr,2(Irj,in(φi),
I rj,out(φi))

 (4)

To make sure the peak will situated in the true position of
the marker and the value is in the range of 0 to 1, we use the
Eq. (5) as follows. Bru,sum(u = R, G, B) represents the
number of paired points that meet the difference between the
paired points situated in the corresponding areas(red, green,
blue).

fBr =



f
′
Br + 0.8 (1 < BrR,sum < 20)∩

(1 < BrG,sum < 20)∩
(1 < BrB,sum < 20)

f
′
Br + 0.5 {(1 < BrR,sum < 20) ∩ (1 < BrG,sum < 20)}∪

{(1 < BrR,sum < 20) ∩ (1 < BrB,sum < 20)}∪
{(1 < BrG,sum < 20) ∩ (1 < BrB,sum < 20)}

f
′
Br (otherwise)

(5)

To make the comprehensive evaluation of the hue and
brightness fitness value and enhance the performance of

brightness fitness value, we use the Eq. (6) as follows. The
equation also makes sure that the result will be in the range
of 0 to 1.

f = fH + fBr − fH · fBr (6)

Equation (7) is used to take the average value of the fitness
value calculated in left camera images Lf and right camera
images Rf .

F =
1
2
(Lf +R f) (7)

3 EXPERIMENTS USING 2D MODEL
Two experiments are presented in this section to prove the

effectiveness of the 2D model in long distance recognition.
To prove the ability of 2D model to against the turbidity, we
conducted the experiment of 3D pose estimation in turbid
water environment with different fitness functions.

To prove the target tracking ability using 2D model with
zoom cameras. We conducted the approaching experiments
in air environment with different focal length. The zoom
cameras can change the focal length from 3.3 [mm] to 7.2
[mm].

3.1 First Experiment: 3D Pose Estimation using 2D

Model in Turbidity Water
The experimental layout is in an indoor pool which was

filled with fresh water. The cameras and 3D marker were
fixed in position. The camera coordinate system ΣH and the
model coordinate system ΣM are situated as Fig. 3. The
amount of turbidity was controlled by adding milk. The milk
was chosen because milk is a highly scattering liquid than
the other [8]. The turbidity level (Formazin Turbidity Unit,
FTU) was measured by using portable turbidity monitoring
sensor TD-M500 (manufactured by OPTEX). The turbidity
level is gradually increased until the system cannot recognize
the 3D marker. ROV starts the approaching operation after it
recognizes the target object before the docking operation at
the distance further than 600 [mm]. Therefore, we choose L
= 2000 [mm] as the distance for recognition performance in
this section.

Table 1 shows the maximum of the fitness value between
y, z plane against different turbidity levels at 2000 [mm] and
the images taken by left and right cameras. Fig. 6 shows the
details of the fitness distribution between y, z plane against
different turbidity levels at 2000 [mm] and (I) left and right
cameras images and level of turbidity, (II) graph of fitness
distribution using fitness function based on hue and (III)
graph of fitness distribution using fitness function based on
hue and brightness are described. The pose estimated using
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Fig. 3. First Experiment: Experimental environment using
dual-eye camera and active 3D marker

full search method indicated in the fitness value distribution
for each of the turbidity levels. The full search method is the
scanning of points in y, z planes of the images and the fitness
value of every points which are 1 [mm] apart in the entire
searching area were calculated. The position of the target
object is represented by the highest peak as shown in Fig. 6.

Table 1. Maximum fitness value of different fitness functions
at 2000 [mm] against different turbidity levels.

According to the results. It can be confirmed that the fit-
ness value decreases as the turbidity increase. In Table 1,
Area(I) means that there is a peak around the true position of
the 3D marker in the fitness distribution shown as Fig. 6(a)(b)
with both fitness functions. However, in Area(II), it is diffi-
cult to observe the whole 3D marker and the peak changes to
the position of the red ball in y, z plane using the fitness func-
tion based on hue and brightness as shown in Fig. 6(c)(III).
The peak shows the possibility of ROV getting close to 3D
marker at the long distance in turbid environment and the
three balls of the 3D marker can be recognized again as the

distance decrease between ROV and 3D marker. In Area(III),
the highest peak is not situated in the position around the 3D
marker with both fitness function which means 3D marker
can not be recognized. This experiment shows the 2D model
with the fitness function based on hue and brightness has the
ability to against the turbidity, even the 3D marker can not be
recognized completely as the turbidity increase.

3.2 Second Experiment: Approaching Experiment us-

ing 2D model with Zoom Cameras in Air Environ-

ment
The experiment is conducted in air environment. The

camera coordinate system ΣH and the model coordinate sys-
tem ΣM are determined as Fig. 4.

Fig. 4. Second Experiment: Experimental environment using
zoom cameras and active 3D marker

To simulate the approaching operation, we set the 3D
marker on the chair at the position x = 2000 [mm], z = 20
[mm], y = 0 [mm] in coordinate system ΣH and push the
chair from x = 2000 [mm] to 600 [mm] then back to 2000
[mm] for one approach. To make sure the marker can be
completely photographed by the cameras all the time, the fo-
cus length f = 7.2 [mm] is used further than 1500 [mm] and
switches to f = 3.3 [mm] less than 1500 [mm] by system.

Figure 5 shows the experimental results. Red lines repre-
sents the timing of switching the focal length and blue lines
shows the images of left and right cameras before and af-
ter changing the focal length. According to the results, the
pose estimation is effective when using different focal length.
In x-axis, the distance from 3D marker to zoom cameras
changes from 2000 [mm] to 600 [mm] is the same as the
distance we moved the 3D marker. The pose estimation in
z-axis is always around 20 [mm] and y-axis is always around
0 [mm] within an error less than 50 [mm]. This error is con-
sidered acceptable in the approaching step. The fitness value
is around 0.8 which means the effectiveness of recognition
during the experiments. However pose estimation is unsta-
ble when changing the focal length and recovers soon after
that. This problem may influence the control of ROV and
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should be discussed in our future research. This experiment
shows the effectiveness of pose estimation using 2D model
with different focal length.

Fig. 5. Approaching experiment using 2D model changing
focal length from 7.2 [mm] to 3.3 [mm]

4 CONCLUSION

In the present paper, pose estimation using 2D model and
Model-based Matching method was proposed for long dis-
tance recognition. The effectiveness of pose estimation that
using 2D model was confirmed experimentally. 2D model
with fitness function based on hue and brightness can against
the turbidity at a long distance. Results show that the pro-
posed system can recognize the relative pose of a 3D marker
robustly even though the turbid environment. In addition,
pose estimation that using 2D model with zoom cameras was
also confirmed in the approaching experiment. It proves that
the proposed system can recognize the position of the target
at a long distance with different focal length. These experi-
ments demonstrate the possibility of 2D model being applied
on ROV for long distance recognition in our future research.
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Fig. 6. Fitness distribution in y-z plane confirming the robustness of the proposed system against different turbidity levels at
2000 [mm].(I) left and right cameras images, (II) graph of fitness distribution using fitness function based on hue and (III) graph
of fitness distribution using fitness function based on hue and brightness
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