
Efficiency and improvement of parallel calculation structure in Field
Programmable Gate Array

Jieyuan He1†, Shiyu Wang2, Takahiro Nitta3, Yuichiro Toda4, and Mamoru Minami5

1Okayama University, Japan
(Tel: 81-86-251-8233, E-mail: p0xd499l@s.okayama-u.ac.jp)

2Okayama University, Japan
(Tel: 81-86-251-8233; E-mail: paw6968v@s.okayama-u.ac.jp)

Abstract: Nowadays, robots that can explore and investigate in dangerous and unknown environments (such as the deep sea)
have attracted extensive attention. When a robot works in a changing environment, it must respond to the changes of the en-
vironment in real-time. Therefore, the visual servoing system is widely used in various scenes. However, in the past, robots
equipped with visual servoing systems often cannot achieve accurate recognition in complex environments such as turbid sea-
water. Therefore, we developed a visual servoing system using a luminous 3D marker to solve the above problems. However,
in previous research, the system has always relied on CPU to realize computing, which not only brings a great burden to CPU
but also the calculation speed of general CPU is not satisfactory. To realize high-speed visual servo, we transplant the evaluation
function which consumes a lot of calculation resources to the FPGA (Field Programmable Gate Array) module. Different from
CPU, parallel calculation using FPGA only needs to be realized through the circuit designed by the designer, to improve the
efficiency. In the past, FPGA design was developed by hardware designers, but now the circuit can also be designed in C through
High-Level Synthesis (HLS) tools. Now, we have successfully realized the fast calculation of the evaluation function and output
the correct results. In this paper, I will explain how to quickly calculate the evaluation function using FPGA. The development
system adopts the Zynq UltraScale + MPSoC ZCU104 evaluation board provided by Xilinx. The evaluation board is equipped
with an ARM CPU and programmable logic units.

Keywords: FPGA Implementation, Visual servoing, Model-Based Method, Targets Recognition

1. INTRODUCTION

Japan has a long coastline and vast sea area. In addition to
the human shortage caused by aging, the demand for intelli-
gent robots that can replace people to perform work in com-
plex and dangerous marine environments has become very
prominent, such as automatic underwater vehicles (AUVs).
Underwater vehicles are used in the fields of subsea explo-
ration, pipeline maintenance, and oil field exploration. Due
to the limited battery capacity, underwater vehicles usually
have limited working time and travel distance. They require
recharging, maintenance support, and data transfer. It is es-
sential to provide an underwater battery charging system for
the AUV return dock station. The real underwater environ-
ment is very complex. During the docking process between
the underwater robot and the charging dock, it is difficult to
observe the correct position and posture of the charging inter-
face due to the influence of water flow disturbance, turbidity,
and refraction effect. To solve this problem, we designed a
3D marker that can be mounted on a charging dock. The 3D
marker can be illuminated. Therefore, even in turbid under-
water environments, the AUV can recognize the 3D marker
and accurately dock with the docking station.

In this recognition system, the recognition of 3D marker
by AUVs is realized by two CCD cameras. These two cam-
eras are similar to human eyes. By comparing the scene im-
ages obtained by the two cameras, the 3D spatial informa-
tion of the target object is obtained. In our previous research,
the CPU will get the hue value according to the image, and

† Jieyuan He is the presenter of this paper.

then calculate the fitness through the fitness function. This
imposes a huge computational burden on the CPU and con-
sumes a lot of power. Moreover, the computing system usu-
ally equipped with a CPU is not portable enough. Therefore,
we try to transplant the part with a large computational load
in the recognition system into FPGA (field programmable
gate array). FPGA is a programmable integrated circuit that
can be configured by designers. FPGAs contain an array
of programmable logic blocks, and a hierarchy of reconfig-
urable interconnects allowing blocks to be wired together.
Logic blocks can be configured to perform complex combi-
national functions or act as simple logic gates like AND and
XOR. Now we have transplanted the fitness function with
the largest computing load to FPGA and obtained the same
accuracy as the CPU computing system.

2. BASIC PRINCIPLE OF 3D POSE ESTI-
MATION

2.1. Model-based Matching method
The system adopts dual-eye cameras to realize the per-

ception of 3D space. The model-based matching method is
used to estimate the matching degree between the projection
model and the captured image. Fig. 1 shows the princi-
ple of the model-based matching method.Σh is the refer-
ence coordinate system of the right camera image and the
left camera image. The 2D model of the real target object in
space is projected naturally to the dual-eye cameras images
and the dotted 3D marker model where the pose is given by
the gene of Genetic Algorithms (GA) is projected from 3D-
to2D [1]. The different relative pose is calculated by com-

The Twenty-Seventh International Symposium on Artificial Life and Robotics 2022 (AROB 27th 2022), 
The Seventh International Symposium on BioComplexity 2022 (ISBC 7th 2022), 
The Fifth International Symposium on Swarm Behavior and Bio-Inspired Robotics 2022 (SWARM 5th 2022) 
ONLINE, January 25-27, 2022

©ISAROB 1311



paringthe projected model and the captured images by the
dual eye cameras. Finally, the best model of the target ob-
ject that represents the true pose can be obtained based on its
highest fitness value. The recognition is performed in 3D but
evaluation is done in 2D.

Fig. 1. Principle of Model-Based Method

2.2. 3D marker model
Fig. 2 shows the structure of the real target object. The

target object has four small balls. The colors of each ball are
blue, green, red and yellow. Fig. 3 shows the construction of
the 3D marker model. Almost the same as the real target ob-
ject, the 3D marker model is also composed of a blue, green,
red, and yellow ball. Each ball is composed of points which
divided into inner portion and outer portion. The points of in-
ner portion and outer portion have two layers and are evenly
distributed every 30 degrees around the center of the sphere.
There are 192 points per model. The size of the inner portion
is the same as that of the real target object. These points are
used to calculate the fitness. When the fitness is the highest,
the inner portion of the model can be considered to repre-
sent the real target object, and the outer portion represents
the background of the real target object. The points in each
portion mean points to calculate the correlation degree on
how much the inner portion overlaps the target object and
the outer portion does not overlap the target object [2].

Fig. 2. 3D marker made of 4-spheres with red, green, blue
and yellow colors

Fig. 3. Model of 3D marker

2.3. Fitness function

The fitness function is designed to evaluate the matching
degree between model and object. The pose of the model is
randomly generated by GA and then projected onto the 2D
image taken by the camera. Finally, the fitness function is
used to calculate the fitness of all models. The fitness will
converge to a peak with the passage of time. At this time, the
inner portion of the model will almost coincide with the true
target object. The pose of this model can be regarded as the
pose of the true target object.

The fitness of the 3D marker model is calculated by hue.
The fitness function of the left camera used in the proposed
method is defined as the Eq. (1)～ Eq. (3). Moreover, the
fitness function of the right camera is consistent with that
of the left camera. In Eq. (1) ,N represents the total num-
ber of points of the inner and outer portion.Irj (φi) ∈ Sin

represents the point in the inner portion andIrj (φi) ∈ Sout

represents the point in the outer portion.φi defines the po-
sition and posture of the model asφi = [x, y, z, ε1, ε2, ε3].
j means the j-th model given by GA, andI represents the
I-th point of the model. Therefore,Irj,in (φi) represents
the I-th point of the inner portion on the j-th model gener-
ated by GA, andIrj,out (φi) represents the I-th point of the
outer portion on the j-th model generated by GA. As shown
in Eq. (2) and Eq. (3), when the ball of the 3D marker sit-
uated in the corresponding inner portions (red, green, blue,
and yellow) of 2D model,PH,1

(
Irj,in (φi)

)
= +1, oth-

erwise PH,1

(
Irj,in (φi)

)
= −1. When the 4 balls sit-

uated in corresponding inner portions at the same time,
PH,2

(
Irj,out (φi)

)
= −1, otherwisePH,2

(
Irj,out (φi)

)
=

+1. We use hue value to judge whether the 4 balls of 3D
marker overlapped in the 2D model, and the evaluation range
of balls of each color is shown in the Table. 1. Finally, the
fitness for evaluation is the average of the fitness of the model
located on the left and right cameras, as shown in Eq. (4).

The Twenty-Seventh International Symposium on Artificial Life and Robotics 2022 (AROB 27th 2022), 
The Seventh International Symposium on BioComplexity 2022 (ISBC 7th 2022), 
The Fifth International Symposium on Swarm Behavior and Bio-Inspired Robotics 2022 (SWARM 5th 2022) 
ONLINE, January 25-27, 2022

©ISAROB 1312



L
FH =

1

N

0

B

@

X

I rj(φi)∈Sin

PH,1

“

I
rj,in (φi)

”

+
X

I rj(φi)∈Sout

PH,2

“

I
rj,out (φi)

”

1

C

A

(1)

PH,1

“

I
rj,in (φi)

”

=

(

+1, if Hr

“

Irj,in (φi)
”

∈ [Hr,min, Hr,max]

−1, otherwise
(2)

PH,2

“

I
rj,out (φi)

”

=

(

−1, if Hr

“

Irj,out (φi)
”

∈ [Hr,min, Hr,max]

+1, otherwise
(3)

Table 1. Hue ranges of left and right cameras that are
detected and calculated as red, green, blue and yellow in

fitness function
Red Green Blue Yellow

RightCamera Hr,min 150 320 0 245
Hr,max 195 350 70 300

Left Camera Hr,min 150 320 0 245
Hr,max 195 350 70 300

FH =
LFH +R FH

2
(4)

3. DEVELOPMENT ENVIRONMENT

3.1. Development hardware
In order to realize high-speed visual servoing, we are

transplanting the part which consumes a lot of calculation re-
sources into FPGA. By using the integrated circuit designed
by the designer to perform parallel processing, the efficiency
can be improved. The current development hardware is the
zynq ultrascale + MPSoC zcu104 Evaluation Kit developed
by Xilinx. It is a combination of FPGA chip that is called
PL(Programmable Logic), and CPU unit of arm architecture
that is called PS(Processing System). Data is transferred be-
tween them through DMA. In addition, both CPU units and
FPGA can perform calculation processing, but in order to
maximize efficiency, it is best to let the FPGA side perform
as many calculations as possible. The dual-cameras are con-
nected to the board through USB to obtain images. Develop-
ment computer is used to design circuits and communicate
with the board through USB.

3.2. Software environment preparation
In order to carry out development, the preparation of sev-

eral software environments is indispensable. Ubuntu Linux
16.04 LTS(64 bit) is installed. The Vitis unified software
platform enables the development of FPGAs. The Vivado
HLS Design Suite supply design teams with the tools and
methodology needed to leverage C-based design. The PetaL-
inux Tools offers everything necessary to customize, build
and deploy Embedded Linux solutions on Xilinx processing
systems. The circuit design and configuration files can be
compiled and generated by the development computer and
written into the evaluation board through SD card[3].

4. SCHEME OF FITNESS CALCULATION
WITH FPGA IMPLEMENTATION

In the past, all calculation processing of the model-based
matching method recognition system was completed by the
CPU. This places a huge load on the CPU. Therefore, in an
ideal state, programmable logic will undertake most of the
computing processing, and the CPU, that is, the processing
system, only needs to undertake the task of reading images
or some initial tasks. In addition, the performance of the
processing system on the Evaluation Kit is not enough for a
large number of calculations. Therefore, it is necessary to
optimize the algorithm of programmable logic in both the
GA algorithm and fitness evaluation. At this stage, we have
completed the transplantation of the fitness function which
consumes a lot of calculation resources.

4.1. OpenCL
Fig. 4 shows the collaboration principle of processing sys-

tem and programmable logic at this stage. The communica-
tion between them utilizes OpenCL tools. OpenCl (Open
Computing Language) is a framework for writing programs
that execute across heterogeneous platforms consisting of
CPUs, FPGAs and other processors or hardware accelerators.
Programmable logic undertakes the calculation part of fitness
evaluation. The fitness evaluation calculation can be said to
be the part that consumes the most computing resources in
the whole recognition system.

OpenCL

Initialization

Input image 
data

Evaluation

Sorting

Selection

Crossover and 
mutation

Processing 
System

Read image

Programmable 
Logic

Fig. 4. Present recognition system

4.2. HLS Stream Library
Streaming data is a type of data transfer in which

data samples are sent in sequential order starting from
the first sample. Streaming requires no address man-
agement. Therefore, data can be read and written at
high speed through streaming. Vivado HLS provides a
C++ template classhls :: stream <> for modeling stream-

The Twenty-Seventh International Symposium on Artificial Life and Robotics 2022 (AROB 27th 2022), 
The Seventh International Symposium on BioComplexity 2022 (ISBC 7th 2022), 
The Fifth International Symposium on Swarm Behavior and Bio-Inspired Robotics 2022 (SWARM 5th 2022) 
ONLINE, January 25-27, 2022

©ISAROB 1313



ing data structures. The streams implemented with the
hls :: stream <> class have the following attributes. In
the C code, anhls :: stream <> behaves like a FIFO of
infinite depth. There is no requirement to define the size
of an hls :: stream <>. They are read from and writ-
ten to sequentially. That is, after data is read from an
hls :: stream <>, it cannot be read again. Also, an array
such as the pixels of a image, can use streaming. When
an image is transferred from the processing system to pro-
grammable logic in the form of an array, the image can be
specified as streaming. Then, the image pixels will be read
by thehls :: stream <> data type in the method of Fig. 5.
The first pixel of the first row is read first, followed by the
second pixel of the first row, and read down in order. When
all pixels in the first row are read, go to the second row and
start reading from the beginning. Follow the above rule until
the last pixel is read. The last pixel to be read is the640×480
pixel. By keeping the data streaming, the data can be read
without an address[4]. Fig. 6 shows how to specify the image
array and data as streaming. Themat variable is defined as
xf :: mat array format, which stores the pixel information
of the whole image. Fig. 7 shows the time spent with and
without streaming when calculating the fitness of 40 mod-
els. It can be seen that it only takes 4.34 ms with streaming,
which is nearly 700 times faster than without streaming.

Fig. 5. The reading method when the image is specified as
streaming

4.3. Pipeline processing
In the process of reading pixels and calculating fitness, a

large number of loop calculations will be carried out. In a
general CPU, if one640 × 480 pixel image is read, it also
takes at least640 × 480 cycles of latency. With other pro-
cessing, the latency will increase exponentially. In this case,

Fig. 6. The method of specifying the image array and data
as streaming

3037.33

4.34
0

500

1000

1500

2000

2500

3000

3500

Not using streaming Using streaming

C
o

m
p

u
ti

n
g

 t
im

e
(m

s)

Fig. 7. Comparison of calculation speed with and without
streaming

the loop calculation can be processed by the pipeline. The
PIPELINE processing reduces the initiation interval for a
function or loop by allowing the concurrent execution of op-
erations. A pipelined loop can process new inputs everyN
clock cycles, whereN is the initiation interval of the loop.
The default initiation interval for the PIPELINE is 1, which
processes a new input every clock cycle. Pipelining a loop
allows the operations of the loop to be implemented in a con-
current manner as shown in the Fig. 8. The loop needs 3
clock cycles between each input read. The whole loop takes
only 4 cycle clocks with Pipeline. It also shows the default
sequential operation requires 8 clock cycles before the last
output write is performed[5]. In order to verify the effect of
the pipeline, as shown in the Fig. 9, enable pipeline process-
ing and disable pipeline processing respectively under the cy-

The Twenty-Seventh International Symposium on Artificial Life and Robotics 2022 (AROB 27th 2022), 
The Seventh International Symposium on BioComplexity 2022 (ISBC 7th 2022), 
The Fifth International Symposium on Swarm Behavior and Bio-Inspired Robotics 2022 (SWARM 5th 2022) 
ONLINE, January 25-27, 2022

©ISAROB 1314



cle of reading and writing pictures. Then compare the time
spent in the two cases. As shown in the Fig. 10, when read-
ing a640× 480-pixel image, it takes a total of 2.02 ms in the
case of enabling pipeline. In the case of disabling pipeline,
it takes 4.34 ms. When reading a1280 × 960- pixel image,
it takes a total of 8.42 ms in the case of enabling pipeline.
In the case of disabling pipeline, it takes 16.06 ms. When
reading a1920 × 1080-pixel image, it takes a total of 13.27
ms in the case of enabling pipeline. In the case of disabling
the pipeline, it takes 27.75 ms.

Fig. 8. Pipeline processing

Fig. 9. Setting position of pipeline

4.4. Optimization of pixel reading for FPGA character-
istics

Although streaming data and pipeline can greatly improve
the throughput efficiency of data and realize parallel com-
puting of loop, at least640 × 480 cycles of latency are still

2.02

8.42

13.27

4.34

16.06

27.75

0

5

10

15

20

25

30

640×480 1280×960 1920×1080

C
o

m
p

u
ti

n
g

 t
im

e
(m

s)

Pixel

Enable Pipeline Disable Pipeline

Fig. 10. Comparison of calculation time spent on enabling
pipeline and disabling pipeline

required because all pixels of the whole image needs to be
read when processing a640 × 480-pixel picture. However,
it makes no sense to read pixels other than the model gen-
erated by GA. If only the pixels of the points on the model
are read and the fitness is calculated, the cycle of latency can
be greatly reduced. Fig. 11 shows the optimization princi-
ple of transferring RGB values from the processing system
to programmable logic. The processing system first reads
the RGB values of 192 evaluation points on the first model
generated by GA, and then successively reads the RGB val-
ues of other models until the 40th model. Then write the
RGB values of all the models into a new image array (using
OpenCV’s cv::mat class). Finally, transfer the new image to
programmable logic. In this way, the cycle of latency can
be reduced to 1 / 40 of that of reading the whole640 × 480-
pixel image. Table. 2 shows the time spent calculating differ-
ent numbers of models before and after optimization. In the
case of calculating 40 models, it takes only 0.11 microsec-
onds, nearly 40 times faster than before optimization. And
although the number of models increases, this advantage will
be expanded.

Table 2. Comparison of computing time before and after
optimizing the way of reading images

Numberof genes Beforeoptimizing(ms) After optimizing(ms)
40 4.25 0.11
80 8.08 0.16
120 13.15 0.22

5. RESULTS AND EFFICIENCY VERIFICA-
TION

5.1. Correctness verification of calculation results

Because the calculation logic of FPGA is different from
that of CPU, it is very important to verify the calculation
results output by FPGA in the process of FPGA develop-
ment. However, because the transplantation of the GA com-
puting part has not been completed, it is difficult for FPGA
to carry out real-time recognition directly. Therefore, we di-

The Twenty-Seventh International Symposium on Artificial Life and Robotics 2022 (AROB 27th 2022), 
The Seventh International Symposium on BioComplexity 2022 (ISBC 7th 2022), 
The Fifth International Symposium on Swarm Behavior and Bio-Inspired Robotics 2022 (SWARM 5th 2022) 
ONLINE, January 25-27, 2022

©ISAROB 1315



Fig. 11. Optimization of pixel reading

rectly give the positions and postures of 10 models, then let
the CPU and FPGA calculate the fitness of all 10 models in
Fig. 12 respectively, and finally compare them. The whole
recognition system is developed based on the X86 CPU, so
the fitness result calculated by the CPU can be regarded as
true value. By comparing the values in Table. 3, it can be
seen that the fitness of 10 models calculated by FPGA, that
is, genes, is completely consistent with the results obtained
by CPU. Therefore, the fitness calculation results developed
by FPGA are verified.

Fig. 12. Image of target

5.2. Efficiency of Fitness Calculation with FPGA Imple-
mentation

On the basis of ensuring that FPGA can calculate the fit-
ness function correctly, it is very important to evaluate the
computational efficiency of FPGA. As mentioned in the pre-
vious subsection, although it is difficult to directly recognize

Table 3. Correctness verification of results calculated by
FPGA and CPU

Positionsand postures of gene Resultof CPU Resultof FPGA
(-23.44,-19.92,710.60,-0.0031,-0.0627,0.0536) 0.29 0.29
(-16.80,-34.28,695.46,0.0536,-0.0124,-0.0153) 0.32 0.32
(-105.27,-78.03,782.86,0.0218,-0.0076,0.0776) 0.19 0.19
(-18.16,-30.57,702.54,0.0485,-0.0559,0.0025) 0.36 0.36
(-25.20,-9.08,712.30,-0.0925,-0.0848,0.0964) 0.27 0.27
(-23.44,-26.46,717.43,0.0107,-0.0753,0.0231) 0.16 0.16
(299.80,-0.39,857.81,-0.0372,0.1989,0.0605) 0.14 0.14

(-100.78,-63.38,814.60,-0.0439,0.1597,0.0234) 0.12 0.12
(10.55,-5.08,619.78,-0.0787,-0.0159,0.0982) 0.24 0.24
(-94.92,-75.29,863.92,-0.0049,0.1395,0.0484) 0.16 0.16

in real-time at this stage, the time spent in FPGA calculation
can be timed by using the timer provided by OpenCL. Table.
4 shows the time taken by FPGA when calculating different
numbers of genes. It should be noted that when calculating
160 genes, the utilization rate of LUT exceeds 100% at this
time. It can be seen that using FPGA to calculate the fitness
is very efficient.

Table 4. Efficiency of Fitness Calculation with FPGA
Implementation

Numberof genes Latency(cycles) Computingtime(ms) Utilization rate of LUTs(%)
40 7768 0.11 32%
80 15488 0.16 57%
120 23208 0.22 82%
140 27068 0.24 95%
160 30928 0.27 107%

6. CONCLUSION

In this paper, the fitness function calculation based on
model-based matching method is successfully transplanted
to FPGA calculation module. The calculation results and ef-
ficiency are verified. In the future, we will focus on trans-
planting the GA algorithm to FPGA, so as to build and
complete the whole high-speed recognition system based on
FPGA.

REFERENCES

[1] Lwin K N, Myint M, Mukada N, Yamada D, Mat-
suno T, Saitou K, Godou W, Sakamoto T, Minami M,
“ Sea Docking by Dual-eye Pose Estimation with Op-
timized Genetic Algorithm Parameters,”Journal of In-
telligent Robotic Systems, Vol.92, Issue 1, pp.159-186,
DOI (identifier) 10.1007/s10846-018-0970-x, 2018.

[2] Siyu Pan, Renya Takahashi, Jincheng Li, Yuichiro Toda,
Mamoru Minami, ”Expanding the recognition distance
using the Model-based Matching method and the 2D
model by zoom cameras”,26th International Symposium
on Artificial Life and Robotics, Online , pp.711-716, Jan-
uary 21-23, 2021.

[3] Shiqian Luo, Yuichiro Toda, Mamoru Minami, ”Fitness
Calculation with a FPGA Implementation”,26th Inter-
national Symposium on Artificial Life and Robotics, On-
line , pp.705-710, January 21-23, 2021.

[4] Vivado High-Level Synthesis tutorial (UG871).
[5] Vivado Design Suite User Guide: High-Level Synthesis

(UG902).

The Twenty-Seventh International Symposium on Artificial Life and Robotics 2022 (AROB 27th 2022), 
The Seventh International Symposium on BioComplexity 2022 (ISBC 7th 2022), 
The Fifth International Symposium on Swarm Behavior and Bio-Inspired Robotics 2022 (SWARM 5th 2022) 
ONLINE, January 25-27, 2022

©ISAROB 1316




